

Achieving Sustainable Food Processing using Novel Technologies

CARMEN I. MORARU

PhD, University "Dunarea de Jos" Galati Dr. Honoris Causa, USAMV Bucharest

Professor & Chair

Department of Food Science Cornell University

1. A brief presentation of the Department of Food Science at Cornell University

2. Achieving Sustainable Food Processing using Novel Technologies

1. A brief presentation of the Department of Food Science at Cornell University

2. Achieving Sustainable Food Processing using Novel Technologies

Department of Food Science, Cornell University

Approved
Undergraduate
program

\$11.9M Research & Extension Expenditures FY'22

Engagement
Extension Program
CIFS-IPP
Food Venture
Center

Advisory Council

Industry

128

Undergraduate Students 97 FDSC, 31 VIEN Graduate students
27MFS, 12MS,
88PhD

105
Students in the CAU-Cornell dual degree program, Beijing, China

26
Professorial and Teaching Faculty
~ 100
Research and Extension Staff

Chair: Prof. Carmen I. Moraru

cim24@cornell.edu

Assoc. Chair: Prof. Gavin Sacks

gls9@cornell.edu

Departmental programs & facilities

1. A brief presentation of the Department of Food Science at Cornell University

2. Achieving Sustainable Food Processing using Novel Technologies

Environmental impact of food manufacturing

- Energy
- Water
- Methane
- Nitrous Oxide
- Waste

Retail

Food loss and food waste

- About 1/3 of the food produced in the world for human consumption is lost or wasted every year (~ 1.3 billion tons)
- Food losses and waste amount to ~ US\$ 680 billion in industrialized countries and US\$ 310 billion in developing countries.

© INSTITUTE OF FOOD TECHNOLOGISTS | ALL RIGHTS RESERVED

Also important: energy use

A significant amount of energy in the food manufacturing sector is used for:

- Thermal processing
- Cold chain

Final energy consumption in the food sector and its shares for various production steps. Global (top) high-GDP (middle) and low-GDP (bottom) countries Source: (FAO, 2013).

Opportunities for nonthermal technologies

Alternative preservation methods that do not rely on thermal energy

- High pressure processing (HPP)
- Liquid state pulsed electric fields (PEF)
- Membrane filtration
- UV / Light / Plasma treatments

Improve the efficiency of conventional processes

- Solid state PEF and ultrasonics
- Improve extraction efficiency (reduce the need for harsh solvents)
- Improve drying efficiency

Most common nonthermal technologies

High Pressure Processing (HPP)

High Pressure Homogenization

Pulsed Electric Field (PEF)

Light treatments (UV, Pulsed light, LED)

Waste reduction through extended shelf life

Example 1: HPP of deli meats

- Extends shelf life of ham from ~4 to 8 weeks
- Enables reduction of additives (clean label)

Better meat extraction (and better quality)

Cleaner / greener manufacturing

Waste reduction using in-package HPP structuring

HPP induced gelation of proteins can be used for new product development:

- Desirable texture and taste
- High nutritional value
- Prevents losses (in package treatment)
- Built in safety

Untreated pea protein concentrate (PPC)

HPP-treated PPC (600 MPa, 3 min)

Plant proteins

HPP treated milk proteins

Membrane filtration: Increasing shelf life through microbial reduction

Microfiltration

3 - 4 log reduction of total bacteria

No heat induced flavor

Increased shelf life

 A combination of MF and HTST treatment led to virtually <u>no</u> <u>bacterial growth</u> in skim milk over 91 days of refrigeration

Impact of nonthermal processing on milk shelf life

Microfiltration

Histogram of fluid milk counts per half-gallon over shelf-life Day = 14

J. Dairy Sci. 105:9439-9449 https://doi.org/10.3168/jds.2022-22174 **Bactofugation**

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Monte Carlo simulation model predicts bactofugation can extend shelf-life of pasteurized fluid milk, even when raw milk with low spore counts is used as the incoming ingredient

E. R. Griep-Moyer, A. Trmčić,* C. Qian, and C. I. Moraru*

Membrane filtration for energy efficiency

Nonthermal concentration by Forward Osmosis

Cranberry juice & FO juice concentrate 8°Brix → 51°Brix

- High quality concentrates
- High concentration factor achieved

Maximizing benefits by combining RO & FO

 Takes advantage of the high fluxes of RO at low concentration and excellent performance of FO at high concentration

How energy efficient is the process?

Total energy demand:

- 0.099 kWh/ kg water removed for FO concentration
- 3.553 kWh/ kg water removed for thermal concentration

Is this process economically feasible?

Cost estimation for scaling up from pilot to commercial scale:

	RO	FO	RO-FO
Feed (raw material) (L/ hr)	15000	5000	15000
Concentrate (L/ hr)	5000	2500	2500
Water removed (L/ hr)	10000	2500	12500
Cost per L of concentrate (\$/ L)	0.050	0.086	0.186
Cost per L of water removed (\$/ L)	0.025	0.086	0.037

Impact on sustainability goes beyond energy

Main contributors to Global Warming Potential of the RO-FO process

	RO module	FO module	RO-FO
			process
GWP contribution of the process	85.7%	14.3%	100%
GWP contribution of energy	4.58%	0.77%	5.35%
GWP contribution of materials	7.00%	1.17%	8.17%
GWP contribution of chemicals	73.87%	12.33%	86.2%

Global Warming Potential of the RO-FO process

GWP (kg CO ₂ eq) per L	RO module contribution	FO module contribution	RO-FO process (concentrate)	RO-FO process (water removed)
Kg CO ₂ eq/ L concentrate	0.21	0.03	0.24	-
Kg CO2 eq/ L water removed	0.04	0.01	-	0.05

How does this compare to other processes?

Thoughts on the role of nonthermal processing for food systems sustainability

- Nonthermal technologies can improve the sustainability of the food system due to:
 - Lower energy consumption compared to traditional processing
 - Better retention of nutrients
- Commercial applications increasing significantly → costs are coming down
- Comprehensive LCA analysis required before commercial adoption!

THANK YOU!

CARMEN I. MORARU, Professor & Chair

Department of Food Science, Cornell University

CIM24@CORNELL.EDU