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Environmental impact of food manufacturing
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Food loss and food waste

Per capita food losses and waste (kgfyear)
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About 1/3 of the food produced in
the world for human consumption
IS lost or wasted every year (~ 1.3
billion tons)

Food losses and waste amount to
~ US$ 680 billion in industrialized
countries and US$ 310 billion in
developing countries.




Also important: energy use

Global A significant amount
of energy in the food
High-GDP manufacturing sector
countries IS used for:
Low-GDP - Thermal processing
countries - Cold chain
|
0% 20 % 40 % 60 % 80 % 100 %
m Cropping production W Livestock production
W Fisheries production M Processing and distribution

Retail, preparation and cooking

Final energy consumption in the food sector and its shares for various production steps.
Global (top) high-GDP (middle) and low-GDP (bottom) countries Source: (FAO, 2013).



Opportunities for nonthermal technologies

= Alternative preservation methods that do not rely on thermal energy

- High pressure processing (HPP)

- Liquid state pulsed electric fields (PEF)
- Membrane filtration

- UV / Light / Plasma treatments

= Improve the efficiency of conventional processes
- Solid state PEF and ultrasonics

- Improve extraction efficiency (reduce the need for harsh solvents)
- Improve drying efficiency



Most common nonthermal technologies
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Waste reduction through extended shelf life

Example 1: HPP of deli meats

- Extends shelf life of ham from ~4 to 8 weeks == * Reduction of

- Enables reduction of additives (clean label) waste losses
 Cleaner/greener

Example 2: HPP of shellfish

_ _ manufacturing
- Better meat extraction (and better quality)

Hand shucked HPP shucked
=N
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Waste reduction using in-package HPP structuring

HPP induced gelation of proteins can be

used for new product development:
- Desirable texture and taste
- High nutritional value
- Prevents losses (in package treatment)
- Built in safety

HPP treated
milk proteins

Plant proteins

Untreated
pea protein
concentrate (PPC)

HPP-treated PPC £ Y Fzl

(600 MPa, 3 min)

20 9/100g 24 g/100g

(Sim and Moraru, 2019) (Cadesky et al, 2017; Wang et al., 2020)



Membrane filtration:
Increasing shelf life through microbial reduction
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(Griep and Moraru, 2018)



Impact of nonthermal processing on milk shelf life
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(Buehler et al., 2018) (Griep et al., 2022)




Membrane filtration for energy efficiency
Nonthermal concentration by Forward Osmosis

Strawberry juice
| Cranberry juice & FO juice concentrate
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(Beldie and Moraru, 2023)

Punzalan & Padilla-Zakour (2021)



Maximizing benefits by combining RO & FO
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(Menchik and Moraru, 2019)



Is this process economically feasible?

« Cost estimation for scaling up from pilot to commercial scale:

RO FO RO-FO
Feed (raw material) (L/ hr) 15000 5000 15000
Concentrate (L/ hr) 5000 2500 2500
Water removed (L/ hr) 10000 2500 12500
Cost per L of concentrate ($/L) 0.050 0.086 0.186
Cost per L of water removed ($/ L) 0.025 0.086 0.037




Impact on sustainability goes beyond energy
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Main contributors to Global Warming Potential
of the RO-FO process

RO module FO module RO-FO

process
GWP contribution of the process 85.7% 14.3% 100%
GWP contribution of energy 4.58% 0.77% 5.35%
GWP contribution of materials 7.00% 1.17% 8.17%
GWP contribution of chemicals 73.87% 12.33% 86.2%




Global Warming Potential of the RO-FO process

RO module FO module RO-FO process | RO-FO process
GWP (kg CO, eq) per L contribution contribution (concentrate) | (water removed)
Kg CO, eg/ L concentrate 0.21 0.03 0.24 -
Kg CO2 eg/ L water removed 0.04 0.01 ) 0.05
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Thoughts on the role of nonthermal processing
for food systems sustainability

* Nonthermal technologies can improve the sustainability of the
food system due to:

* Lower energy consumption compared to traditional processing
« Better retention of nutrients

« Commercial applications increasing significantly — costs are
coming down

 Comprehensive LCA analysis required before commercial
adoption!
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