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THE LUGIATO-LEFEVER EQUATION (LLE) I

[Lugiato & Lefever, 1987]
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P(x,t) € C, B, € R, F € R (but not only)

NLS-type equation with damping, detuning, and driving
m extensively studied in the physics literature |. . .]

few mathematical results . ..



MATHEMATICAL MODELI

[Chembo & Menyuk, 2013]
M Lugiato-Lefever equation (LLE)

0% %Y (o il + F

m )(x,t) € C intracavity electro-magnetic light field
m F > 0 external laser pump field intensity
B o € R frequency detuning between laser and resonator

® 3 € R resonator dispersion parameter

normal dispersion
anomalous dispersion



EXPERIMENTS AND NUMERICSI

L Frequency combs: optical signals

superposition of modes with equally spaced frequencies
stationary in suitable reference frame.
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[Chembo et al., 2014] [Parra-Rivas, Knobloch, Gomila, ...]
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MATHEMATICAL QUESTIONS AND RESULTSI

L@ existence and stability of nonlinear waves (e.g., steady
solitons, periodic waves, ... )

8 not so many results ...

m existence of steady bounded solutions

Miyaji, Ohnishi & Tsutsumi (2010)

Godey, Balakireva, Coillet & Chembo (2014)
Godey (2016), Delcey & H. (2018)

Mandel & Reichel (2016), Mandel (2018)

m stability of steady periodic solutions

Miyaji, Ohnishi & Tsutsumi (2011)

Delcey & H. (2018)

Hakkaev, Stanislavova, & Stefanov (2018, 2019)
H., Johnson & Perkins (2021)

H., Johnson, Perkins & de Rijk (2022)
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STABILITY OF PERIODIC WAVESI

-l co-periodic perturbations [period T of the wave]

' subharmonic perturbations [period NT, N € N]

L localized perturbations
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STABILITY OF PERIODIC WAVESI

(& Localized perturbations
® spectral stability
[Delcey & H. (2018)]

B spectral stability implies linear stability
[H., Johnson, Perkins (2021)]

B [inear stability implies nonlinear stability
[H., Johnson, Perkins, & de Rijk (2022)]



SPECTRAL STABILITYI

- spectrum of the linearized operator A [matrix differential
operator with periodic coefficients]

A=—1+7C
0 -1
7=(1 )
ro( ~PE—-a+38+¢7 26, ¢i
B 20, —B02 — a+ ¢2 +3¢7

¢ = ¢, + i¢; denotes the T-periodic wave



SPECTRAL STABILITYI

Lo spectrum of the linearized operator A [matrix differential
operator with periodic coefficients]

co-periodic subharmonic localized

space: L2..(0,NT) space: Lp..(0,NT) space: L?(R)
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LOCALIZED PERTURBATIONS I

L continuous spectrum

KEY TOOL: .
_ Bloch decomposition

® Bloch transform representation for g € L2(R)

1 /T iEX v Tilx A

800 = o [ EFRENDE BEX) = 3 e T g(er2nt/ T)
T —n/T ez

m Bloch operator A¢ := e X Ae’** acting in L2(0, T)

® spectrum
0w (A) = U o2 o,1) (Ae)

per
E€[=7/T,m/T)



MAIN RESULTI

Diffusive spectral stability

" the spectrum of the linearized operator A acting in L2(R) satisfies
om)(A) C{A € C: Re(\) <0} U{0};

" there exists 0 > 0 such that for any § € [-m/T,m/T) the real part
of the spectrum of the Bloch operator A¢ := e & Ae’®* acting in
L2..(0, T) satisfies

per

Re (UL%EI,(O,T)(A£)> < —6¢%

(B A=0isa simple eigenvalue of Ay with associated eigenvector 1)
(the derivative ¢’ of the periodic wave).
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LINEAR STABILITYI

L decay of the C%-semigroup et

m difficulty: no spectral gap

m Bloch decomposition of the semigroup
1 /T
ety (x) = / e eAst (¢, x)de
2 —m/T
Bloch operator A¢ := e~ "**Ae®* acting in L2_,(0, T)

[Schneider, ..., Johnson, Noble, Rodrigues, Zumbrun]



LINEAR STABILITYI

L Hypotheses

m diffusive spectral stability;

m the operator A generates a C%-semigroup on L?(R) and for
each { € [-n/T,n/T) the Bloch operators A, generate
C%-semigroups on L2_,(0, T);

m there exist positive constants wg and Gy such that for each
& €|-m/T,n/T) the Bloch resolvent operators satisfy

(1 = Ae) Mz, 0,7y < Co, for all |u] > pio.

per

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]



MAIN RESULTI

"Bl There exists a constant C > 0 such that for any v € L}(R) N L%(R)
and all t > 0 we have !

eVl 2gmy < €A+ V@i
"M Furthermore, et = sp(t) + S(t) with
||5p(t)VH1_2(]R) <C(1+ t)_1/4||VHL1(R)’

], < 0 e

L2(R)

!The decay is lost when v € [2(R), only.



@ estimates on Bloch semigroups e’<t, ¢ € [-n/T,7/T)
(use: the diffusive spectral stability hypothesis, resolvent estimate,
Gearhart-Priiss theorem)

m For any & € (0,7/T), there exist Cy > 0, 79 > 0, such that

A —
||e EtHL(Lier(O,T)) < Ge ™",
forall t >0and all £ € [-n/T,n/T) with |{] > &.
m There exists & € (0,7/T) and C; > 0, n; > 0 such that

HeA&t(I - n(E))H[:(L%m(O,T)) S Cleinli

for all t > 0 and all |£| < &, where (&) is the spectral
projection onto the (one-dimensional) eigenspace associated to
the eigenvalue A\ (£), the continuation for small £ of the simple
eigenvalue 0 of Ay.




- decompose the semigroup et (use: the representation
formula for the semigroup and a smooth cut-off function with

p(&) =1 for |¢] < &1 /2 and p(&) = 0 for [£] > &1)

1 ‘ﬂ‘/T i
eMv() =5 | plQ)e et (e, x)de
™ J—x/T
1 /T 1 iEx JAet s d
tan | (- PN xae
=: Sie(t)v(x) + Sne(t)v(x)

and show that

1S (V) S €IVl ey




@ decompose Sj(t)v(x) (use the diffusive spectral stability
hypothesis)

w/T ]
Sir(t)v(x) = — / p(E) e AIE)V(E, x)d

27 —n/T
1 /T i Act
bor [ sl - ne)u(e N
™ —n/T
=: S (t)v(x) + Sir(t)v(x)
and show that
Hshf(t)v ®) S e vz




‘@ decompose S.(t)v(x) (use formula for M(¢))

/T )
S(t)v(x) = 2;/_ /Tp(g)e,gxeAgtn(O)V(&X)dg
/T ‘
+217r /, /Tﬂ(f)e’gxe“““(ﬂ(O) —N(&)v(&, x)d¢
=:sp(t)v(x) + gc(t)v(x)

and show that?

"

—deg? —3/4
S(OV]]y S 1™ @IVl (14 6Vl

— 2 —
Isp(E)V Il 2y S ™ Flliz @y IvIle@S (1 +6) 74 Iv]ne

*The decay is lost when v € L?(R), only.
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L& linear stability implies nonlinear stability

~~ rely on Duhamel’s formulation and properties of the
semigroup

~~ two main difficulties:
® semigroup with slow decay (1 4 t)~1/*

m C%semigroup



NONLINEAR STABILITY I

L First difficulty: semigroup with slow decay (1 + t)*l/4

® no decay for the (unmodulated) perturbation

[0(x, 1) = ¥(x, 1) — $(x) |

satisfying (Duhamel formulation)

t
9(¢) = eAtvo + / A=) {7(9(s)) ds
0



NONLINEAR STABILITY I

L First difficulty: semigroup with slow decay (1 + t)_1/4

® no decay for the (unmodulated) perturbation

[7(x, ) = p(x, t) — $(x) |

satisfying (Duhamel formulation)

t
5(t) = eAtvy + / A=) {7(5(s)) ds
0

m define a modulated perturbation

[v(x,8) = Y(x—7(x, 1), t) — $(x) ]

[Schneider, Doelman, Sandstede, Scheel, Uecker,

... Johnson, Noble, Rodrigues, Zumbrun]



NONLINEAR STABILITY I

(@ modulated perturbation
[v(xt) = Y(x—1(x, £), 1) — $(x) |
~~ satisfies (0; — A) (v +v¢') = N (v,7,9¢y) + (0 — A) (7xv)




NONLINEAR STABILITY I

(@ modulated perturbation
[v(xt) = Y(x—1(x, £), 1) — $(x) |
~~ satisfies (0; — A) (v +v¢') = N (v,7,9¢y) + (0 — A) (7xv)

~~> use Duhamel formulation and | et = s,(t) + 5(t) | to:

m define the phase modulation ~(x, t)

70 = sy + [ C5o(t — IN(U(s),1(s), ey(s) ds

(such that it captures the slowest decay rate (1 + t)~'/%)
® obtain a formula for v(x, t)

() =30 + [ 5t~ IN(V(3),7(5). 09(5)) ds + (@)

(stronger decay rate (1 4 t)~3/%; enough to conclude .. .)



NONLINEAR STABILITY I

L Second difficulty: C%-semigroup

® no control of derivatives of the modulated perturbation
[v(x, ) = p(x—7(x, 1), 1) — $(x)|

appearing in the nonlinear terms A (v(s),v(s), 9:v(s))




NONLINEAR STABILITY I

[ Second difficulty: C%-semigroup
® no control of derivatives of the modulated perturbation
[v(x, ) = p(x—7(x, 1), 1) — $(x)|
appearing in the nonlinear terms A (v(s),v(s), 9:v(s))

B use integration by parts to gain derivatives and decay in the
formula for the phase modulation v(x, t)

7(t) = sp(t)vo + /Otsp(f — 5)N(v(s),7(s), 0ev(s)) ds




NONLINEAR STABILITY I

L Second difficulty: C%-semigroup

® no control of derivatives of the modulated perturbation
[v(x, ) = p(x—7(x, 1), 1) — $(x)|

appearing in the nonlinear terms A (v(s),v(s), 9:v(s))

B use integration by parts to gain derivatives and decay in the
formula for the phase modulation ~(x, t)

® also use the unmodulated perturbation

[0(x, 1) = 9(x, 1) — $(x) |

(slow decay but no loss of derivatives)

[Sandstede & de Rijk (2021)]



NONLINEAR STABILITY I

L for the unmodulated perturbation #(x, t) and the modulated
perturbation v(x, t)

®m obtain the decay rate (1 + t)~3/* for the modulated
perturbation 3

v(t) = S(t)vo + /Ot S(t = )N (v(s),7(s), rr(s)) ds + (t)v(t)

® obtain the needed regularity for the unmodulated perturbation

v(t) = vy + / t e TIN(U(s)) ds
0

® use mean value inequalities to connect v(x, t) and v(x, t)

3Recall the decay rates in the decomposition e’ = s,(t) + 5(t)



MAIN RESULTI

q There exist constants €, M > Q such that, whenever the initial
perturbation vy € LY(R) N H*(R) satisfies Eg := ||vol| ;10 < €,
there exist functions

7,y € C([0,00), H*(R)) N C*([0, ), H*(R))

with 7(0) = vo and v(0) = 0 such that {)(t) = ¢ + V(t) is the
unique global solution of LLE with initial condition 1¥(0) = ¢ + v.

Ll The inequalities
l(t) — @2, [[V(E)]l 2 < MEo(1 + £) ™%,

9 (= (> ), t) — |l 2. < MEg(1 + £) 7,
hold for all t > 0.




FURTHER ISSUESI

stability of solitary and generalized solitary waves
existence and stability of other observed solutions:
multi-solitons, breathers, ...

other versions of LLE
(non-constant source term F,
two spatial dimensions, ... )

connections between mathematical
and experimental results
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