Dynamics of Kerr optical frequency combs

Mariana Haragus

Institut FEMTO-ST Université de Franche-Comté, France

Joint works with: Mat Johnson, Wesley Perkins, Björn de Rijk

A PROBLEM FROM OPTICS

A Problem from Optics

Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet, Aurelien Coillet]

A Problem from Optics

Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet, Aurelien Coillet]

A Problem from Optics

Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet, Aurelien Coillet]

▲ Applications: aerospace engineering

Clocks

Radars

THE LUGIATO-LEFEVER EQUATION (LLE)

[Lugiato & Lefever, 1987]

$$\frac{\partial \psi}{\partial t} = -i\beta \frac{\partial^2 \psi}{\partial x^2} - (1 + i\alpha)\psi + i\psi |\psi|^2 + F$$

- $\psi(x,t) \in \mathbb{C}, \ \beta, \alpha \in \mathbb{R}, \ F \in \mathbb{R} \ (but \ not \ only)$
- NLS-type equation with damping, detuning, and driving

THE LUGIATO-LEFEVER EQUATION (LLE)

[Lugiato & Lefever, 1987]

$$\frac{\partial \psi}{\partial t} = -i\beta \frac{\partial^2 \psi}{\partial x^2} - (1 + i\alpha)\psi + i\psi |\psi|^2 + \mathbf{F}$$

- $\psi(x,t) \in \mathbb{C}, \ \beta, \alpha \in \mathbb{R}, \ F \in \mathbb{R} \ (but \ not \ only)$
- NLS-type equation with damping, detuning, and driving
- extensively studied in the physics literature [...]
- few mathematical results . . .

Mathematical model

[Chembo & Menyuk, 2013]

Lugiato-Lefever equation (LLE)

$$rac{\partial \psi}{\partial t} = -ieta rac{\partial^2 \psi}{\partial x^2} - (1 + ilpha)\psi + i\psi \left|\psi\right|^2 + \mathbf{F}$$

- $\psi(x,t) \in \mathbb{C}$ intracavity electro-magnetic light field
- F > 0 external laser pump field intensity
- lacktriangledown $lpha\in\mathbb{R}$ frequency detuning between laser and resonator
- lacksquare $eta \in \mathbb{R}$ resonator dispersion parameter

$$oldsymbol{eta} > \mathbf{0}$$
 normal dispersion

$$eta < \mathbf{0}$$
 anomalous dispersion

EXPERIMENTS AND NUMERICS

Frequency combs: optical signals

superposition of modes with equally spaced frequencies stationary in suitable reference frame.

[Chembo et al., 2014]

[Parra-Rivas, Knobloch, Gomila, . . .]

MATHEMATICAL QUESTIONS AND RESULTS

existence and stability of nonlinear waves (e.g., steady solitons, periodic waves, . . .)

MATHEMATICAL QUESTIONS AND RESULTS

existence and stability of nonlinear waves (e.g., steady solitons, periodic waves, . . .)

not so many results ...

existence of steady bounded solutions

Miyaji, Ohnishi & Tsutsumi (2010) Godey, Balakireva, Coillet & Chembo (2014) Godey (2016), Delcey & H. (2018) Mandel & Reichel (2016), Mandel (2018)

■ **stability** of steady periodic solutions

Miyaji, Ohnishi & Tsutsumi (2011)

Delcey & H. (2018)

Hakkaev, Stanislavova, & Stefanov (2018, 2019)

H., Johnson & Perkins (2021)

H., Johnson, Perkins & de Rijk (2022)

STABILITY OF PERIODIC WAVES

STABILITY OF PERIODIC WAVES

STABILITY OF PERIODIC WAVES

ightharpoonup co-periodic perturbations [period T of the wave]

subharmonic perturbations [period NT, $N \in \mathbb{N}$]

localized perturbations

Stability of Periodic Waves

Localized perturbations

spectral stability

[Delcey & H. (2018)]

■ spectral stability implies linear stability

[H., Johnson, Perkins (2021)]

linear stability implies nonlinear stability

[H., Johnson, Perkins, & de Rijk (2022)]

SPECTRAL STABILITY

spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

$$A = -I + \mathcal{J}\mathcal{L}$$

$$\mathcal{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\mathcal{L} = \begin{pmatrix} -\beta \partial_x^2 - \alpha + 3\phi_r^2 + \phi_i^2 & 2\phi_r \phi_i \\ 2\phi_r \phi_i & -\beta \partial_x^2 - \alpha + \phi_r^2 + 3\phi_i^2 \end{pmatrix}$$

 $\phi = \phi_r + i\phi_i$ denotes the *T*-periodic wave

SPECTRAL STABILITY

spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

LOCALIZED PERTURBATIONS

a continuous spectrum

LOCALIZED PERTURBATIONS

continuous spectrum

KEY TOOL:

Bloch decomposition

■ Bloch transform representation for $g \in L^2(\mathbb{R})$

$$g(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} e^{i\xi x} \check{g}(\xi, x) d\xi, \quad \check{g}(\xi, x) := \sum_{\ell \in \mathbb{Z}} e^{2\pi i \ell x/T} \hat{g}(\xi + 2\pi \ell/T)$$

- Bloch operator $A_{\xi} := e^{-i\xi x} A e^{i\xi x}$ acting in $L^2(0,T)$
- spectrum

$$\sigma_{L^2(\mathbb{R})}\left(\mathcal{A}
ight) = igcup_{m{\xi} \in [-\pi/T, \pi/T)} \sigma_{L^2_{\mathrm{per}}(0,T)}\left(\mathcal{A}_{m{\xi}}
ight)$$

Main result

Diffusive spectral stability

lacktriangle the spectrum of the linearized operator $\mathcal A$ acting in $L^2(\mathbb R)$ satisfies

$$\sigma_{L^2(\mathbb{R})}(\mathcal{A}) \subset \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) < 0\} \cup \{0\};$$

there exists $\theta > 0$ such that for any $\xi \in [-\pi/T, \pi/T)$ the real part of the spectrum of the Bloch operator $\mathcal{A}_{\xi} := e^{-i\xi x} \mathcal{A} e^{i\xi x}$ acting in $L^2_{\mathrm{per}}(0,T)$ satisfies

$$\operatorname{Re}\left(\sigma_{L_{\mathrm{per}}^2(0,T)}(\mathcal{A}_{\xi})\right) \leq -\theta\xi^2;$$

 $\lambda = 0$ is a simple eigenvalue of A_0 with associated eigenvector ψ (the derivative ϕ' of the periodic wave).

LINEAR STABILITY

decay of the C^0 -semigroup e^{At}

LINEAR STABILITY

- **decay of the** C^0 -semigroup e^{At}
 - difficulty: no spectral gap

Bloch decomposition of the semigroup

$$e^{\mathcal{A}t}v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} e^{i\xi x} e^{\mathcal{A}_{\xi}t} \check{v}(\xi, x) d\xi$$

Bloch operator $\mathcal{A}_{\xi}:=e^{-i\xi x}\mathcal{A}e^{i\xi x}$ acting in $\mathcal{L}^2_{
m per}(0,T)$

[Schneider, ..., Johnson, Noble, Rodrigues, Zumbrun]

LINEAR STABILITY

Hypotheses

- diffusive spectral stability;
- the operator \mathcal{A} generates a C^0 -semigroup on $L^2(\mathbb{R})$ and for each $\xi \in [-\pi/T, \pi/T)$ the Bloch operators \mathcal{A}_{ξ} generate C^0 -semigroups on $L^2_{\mathrm{per}}(0,T)$;
- there exist positive constants μ_0 and C_0 such that for each $\xi \in [-\pi/T, \pi/T)$ the Bloch resolvent operators satisfy

$$\|(i\mu - \mathcal{A}_{\xi})^{-1}\|_{\mathcal{L}(L^2_{\mathrm{per}}(0,T))} \le C_0, \text{ for all } |\mu| > \mu_0.$$

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]

Main result

There exists a constant C > 0 such that for any $v \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and all t > 0 we have ¹

$$\|e^{\mathcal{A}t}v\|_{L^2(\mathbb{R})} \le C(1+t)^{-1/4}\|v\|_{L^1(\mathbb{R})\cap L^2(\mathbb{R})}.$$

Furthermore,
$$e^{At} = s_p(t) + \widetilde{S}(t)$$
 with

$$\|s_p(t)v\|_{L^2(\mathbb{R})} \leq C(1+t)^{-1/4}\|v\|_{L^1(\mathbb{R})},$$

$$\|\widetilde{S}(t)v\|_{L^2(\mathbb{R})} \le C(1+t)^{-3/4} \|v\|_{L^1(\mathbb{R})\cap L^2(\mathbb{R})}.$$

¹The decay is lost when $v \in L^2(\mathbb{R})$, only.

estimates on Bloch semigroups $e^{A_{\xi}t}$, $\xi \in [-\pi/T, \pi/T)$

(use: the diffusive spectral stability hypothesis, resolvent estimate, Gearhart-Prüss theorem)

■ For any $\xi_0 \in (0, \pi/T)$, there exist $C_0 > 0$, $\eta_0 > 0$, such that

$$\|e^{\mathcal{A}_{\xi}t}\|_{\mathcal{L}(L^{2}_{per}(0,T))} \leq C_{0}e^{-\eta_{0}t},$$

for all $t \geq 0$ and all $\xi \in [-\pi/T, \pi/T)$ with $|\xi| > \xi_0$.

■ There exists $\xi_1 \in (0, \pi/T)$ and $C_1 > 0$, $\eta_1 > 0$ such that

$$\|e^{\mathcal{A}_{\xi}t}(I-\Pi(\xi))\|_{\mathcal{L}(L^2_{por}(0,T))} \leq C_1 e^{-\eta_1 t},$$

for all $t \geq 0$ and all $|\xi| < \xi_1$, where $\Pi(\xi)$ is the spectral projection onto the (one-dimensional) eigenspace associated to the eigenvalue $\lambda_c(\xi)$, the continuation for small ξ of the simple eigenvalue 0 of \mathcal{A}_0 .

decompose the semigroup $e^{\mathcal{A}t}$ (use: the representation formula for the semigroup and a smooth cut-off function with $\rho(\xi)=1$ for $|\xi|<\xi_1/2$ and $\rho(\xi)=0$ for $|\xi|>\xi_1)$

$$e^{\mathcal{A}t}v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\check{v}(\xi,x)d\xi$$
$$+\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} (1-\rho(\xi))e^{i\xi x}e^{\mathcal{A}_{\xi}t}\check{v}(\xi,x)d\xi$$
$$=: S_{lf}(t)v(x) + S_{hf}(t)v(x)$$

and show that

$$||S_{hf}(t)v||_{L^{2}(\mathbb{R})} \lesssim e^{-\eta t} ||v||_{L^{2}(\mathbb{R})}$$

decompose $S_{lf}(t)v(x)$ (use the diffusive spectral stability hypothesis)

$$S_{lf}(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\Pi(\xi)\check{v}(\xi,x)d\xi$$
$$+\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}(1-\Pi(\xi))\check{v}(\xi,x)d\xi$$
$$=: S_{c}(t)v(x) + \widetilde{S}_{lf}(t)v(x)$$

and show that

$$\left\|\widetilde{S}_{hf}(t)v\right\|_{L^{2}(\mathbb{R})} \lesssim e^{-\eta t} \|v\|_{L^{2}(\mathbb{R})}$$

decompose $S_c(t)v(x)$ (use formula for $\Pi(\xi)$)

$$S_{c}(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\Pi(0)\check{v}(\xi,x)d\xi$$
$$+\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}(\Pi(0) - \Pi(\xi))\check{v}(\xi,x)d\xi$$
$$=: s_{p}(t)v(x) + \widetilde{S}_{c}(t)v(x)$$

and show that²

$$\begin{split} & \left\| \widetilde{S}_c(t) v \right\|_{L^2(\mathbb{R})} \lesssim \| \xi e^{-d\xi^2 t} \|_{L^2_{\xi}(\mathbb{R})} \| v \|_{L^1(\mathbb{R})} \lesssim (1+t)^{-3/4} \| v \|_{L^1(\mathbb{R})} \\ & \left\| s_p(t) v \right\|_{L^2(\mathbb{R})} \lesssim \| e^{-d\xi^2 t} \|_{L^2_{\xi}(\mathbb{R})} \| v \|_{L^1(\mathbb{R})} \lesssim (1+t)^{-1/4} \| v \|_{L^1(\mathbb{R})} \end{split}$$

²The decay is lost when $v \in L^2(\mathbb{R})$, only.

linear stability implies nonlinear stability

linear stability implies nonlinear stability

ightharpoonup rely on Duhamel's formulation and properties of the semigroup

- semigroup with slow decay $(1+t)^{-1/4}$
- $lacktriangleright C^0$ -semigroup

First difficulty: semigroup with slow decay $(1+t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$\tilde{v}(x,t) = \psi(x,t) - \phi(x)$$

satisfying (Duhamel formulation)

$$\widetilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds$$

First difficulty: semigroup with slow decay $(1+t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$\tilde{v}(x,t) = \psi(x,t) - \phi(x)$$

satisfying (Duhamel formulation)

$$\widetilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds$$

■ define a modulated perturbation

$$\mathbf{v}(\mathbf{x},\mathbf{t}) = \psi(\mathbf{x} - \gamma(\mathbf{x},\mathbf{t}),\mathbf{t}) - \phi(\mathbf{x})$$

[Schneider, Doelman, Sandstede, Scheel, Uecker, ... Johnson, Noble, Rodrigues, Zumbrun]

modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

$$\rightsquigarrow$$
 satisfies $(\partial_t - \mathcal{A})(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - \mathcal{A})(\gamma_x v)$

modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

$$\rightsquigarrow$$
 satisfies $(\partial_t - \mathcal{A})(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - \mathcal{A})(\gamma_x v)$

$$ightharpoonup$$
 use Duhamel formulation and $e^{\mathcal{A}t}=s_{p}(t)+\widetilde{S}(t)$ to:

• define the phase modulation $\gamma(x, t)$

$$\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s)\mathcal{N}(v(s),\gamma(s),\partial_t\gamma(s)) ds$$

(such that it captures the slowest decay rate $(1+t)^{-1/4}$)

 \blacksquare obtain a formula for v(x,t)

$$\mathbf{v(t)} = \widetilde{S}(t)v_0 + \int_0^t \widetilde{S}(t-s)\mathcal{N}(\mathbf{v(s)}, \gamma(s), \partial_t \gamma(s)) ds + \gamma_{\mathsf{x}}(t)\mathbf{v(t)}$$

(stronger decay rate $(1+t)^{-3/4}$; enough to conclude ...)

Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$v(x,t) = \psi(x - \gamma(x,t),t) - \phi(x)$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

NONLINEAR STABILITY

Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$\mathbf{v}(\mathbf{x},t) = \psi(\mathbf{x} - \gamma(\mathbf{x},t),t) - \phi(\mathbf{x})$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

• use integration by parts to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$

$$\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s)\mathcal{N}(v(s),\gamma(s),\partial_t\gamma(s)) ds$$

Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

- use **integration by parts** to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$
- also use the unmodulated perturbation

$$\tilde{\mathbf{v}}(\mathbf{x},t) = \psi(\mathbf{x},t) - \phi(\mathbf{x})$$

(slow decay but no loss of derivatives)

[Sandstede & de Rijk (2021)]

- for the unmodulated perturbation $\tilde{v}(x,t)$ and the modulated perturbation v(x,t)
 - obtain the decay rate $(1+t)^{-3/4}$ for the modulated perturbation ³

$$oldsymbol{v(t)} = \widetilde{S}(t) v_0 + \int_0^t \widetilde{S}(t-s) \mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s)) \, ds + \gamma_x(t) v(t)$$

■ obtain the needed regularity for the unmodulated perturbation

$$\widetilde{\mathbf{v}}(t) = e^{At} v_0 + \int_0^t e^{A(t-s)} \widetilde{\mathcal{N}}(\widetilde{\mathbf{v}}(s)) ds$$

• use mean value inequalities to connect $\tilde{v}(x,t)$ and v(x,t)

³Recall the decay rates in the decomposition $e^{At} = s_p(t) + \widetilde{S}(t)$

Main result

There exist constants ε , M>0 such that, whenever the initial perturbation $v_0 \in L^1(\mathbb{R}) \cap H^4(\mathbb{R})$ satisfies $E_0 := ||v_0||_{L^1 \cap H^4} < \varepsilon$, there exist functions

$$\tilde{\mathbf{v}}, \gamma \in C([0,\infty), H^4(\mathbb{R})) \cap C^1([0,\infty), H^2(\mathbb{R})),$$

with $\tilde{v}(0) = v_0$ and $\gamma(0) = 0$ such that $\psi(t) = \phi + \tilde{v}(t)$ is the unique global solution of LLE with initial condition $\psi(0) = \phi + v_0$.

The inequalities

$$\|\psi(t) - \phi\|_{L^2}, \ \|\gamma(t)\|_{L^2} \le ME_0(1+t)^{-\frac{1}{4}},$$
 $\|\psi(\cdot - \gamma(\cdot, t), t) - \phi\|_{L^2}, \le ME_0(1+t)^{-\frac{3}{4}},$

hold for all $t \geq 0$.

FURTHER ISSUES

- stability of solitary and generalized solitary waves
- existence and stability of other observed solutions: multi-solitons, breathers, . . .
- other versions of LLE (non-constant source term F, two spatial dimensions, ...)
- connections between mathematical and experimental results

