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A Problem from Optics

Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet,

Aurelien Coillet]

Applications: aerospace engineering

Clocks Radars



The Lugiato-Lefever equation (LLE)

[Lugiato & Lefever, 1987]

∂ψ

∂t
= −iβ

∂2ψ

∂x2
− (1 + iα)ψ + iψ |ψ|2 + F

� ψ(x, t) ∈ C, β, α ∈ R, F ∈ R (but not only)

� NLS-type equation with damping, detuning, and driving

� extensively studied in the physics literature [. . . ]

� few mathematical results . . .
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Mathematical model

[Chembo & Menyuk, 2013]

Lugiato-Lefever equation (LLE)

∂ψ

∂t
= −iβ

∂2ψ

∂x2
− (1 + iα)ψ + iψ |ψ|2 + F

� ψ(x, t) ∈ C intracavity electro-magnetic light field

� F > 0 external laser pump field intensity

� α ∈ R frequency detuning between laser and resonator

� β ∈ R resonator dispersion parameter

β > 0 normal dispersion

β < 0 anomalous dispersion



Experiments and numerics

Frequency combs: optical signals
superposition of modes with equally spaced frequencies

stationary in suitable reference frame.

[Chembo et al., 2014] [Parra-Rivas, Knobloch, Gomila, . . . ]



Mathematical questions and results

existence and stability of nonlinear waves (e.g., steady
solitons, periodic waves, . . . )

not so many results . . .

� existence of steady bounded solutions

Miyaji, Ohnishi & Tsutsumi (2010)
Godey, Balakireva, Coillet & Chembo (2014)
Godey (2016), Delcey & H. (2018)
Mandel & Reichel (2016), Mandel (2018)

� stability of steady periodic solutions

Miyaji, Ohnishi & Tsutsumi (2011)
Delcey & H. (2018)
Hakkaev, Stanislavova, & Stefanov (2018, 2019)
H., Johnson & Perkins (2021)
H., Johnson, Perkins & de Rijk (2022)
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subharmonic perturbations [period NT , N ∈ N]

localized perturbations
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Stability of periodic waves

Localized perturbations

� spectral stability
[Delcey & H. (2018)]

� spectral stability implies linear stability
[H., Johnson, Perkins (2021)]

� linear stability implies nonlinear stability
[H., Johnson, Perkins, & de Rijk (2022)]



Spectral stability

spectrum of the linearized operator A [matrix differential
operator with periodic coefficients]

A = −I + JL

J =

(
0 −1
1 0

)
L =

(
−β∂2x − α + 3φ2r + φ2i 2φrφi

2φrφi −β∂2x − α + φ2r + 3φ2i

)
φ = φr + iφi denotes the T -periodic wave



Spectral stability

spectrum of the linearized operator A [matrix differential
operator with periodic coefficients]

co-periodic

space: L2
per(0,NT )

subharmonic

space: L2
per(0,NT )

localized

space: L2(R)



Localized perturbations

continuous spectrum

Key tool:
Bloch decomposition

� Bloch transform representation for g ∈ L2(R)

g(x) =
1

2π

∫ π/T

−π/T
e iξx ǧ(ξ, x)dξ, ǧ(ξ, x) :=

∑
`∈Z

e2πi`x/T ĝ(ξ+2π`/T )

� Bloch operator Aξ := e−iξxAe iξx acting in L2(0,T )

� spectrum
σL2(R) (A) =

⋃
ξ∈[−π/T ,π/T )

σL2per(0,T ) (Aξ)
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Main result

Diffusive spectral stability

the spectrum of the linearized operator A acting in L2(R) satisfies

σL2(R)(A) ⊂ {λ ∈ C : Re(λ) < 0} ∪ {0};

there exists θ > 0 such that for any ξ ∈ [−π/T , π/T ) the real part
of the spectrum of the Bloch operator Aξ := e−iξxAe iξx acting in
L2per(0,T ) satisfies

Re
(
σL2

per(0,T )(Aξ)
)
≤ −θξ2;

λ = 0 is a simple eigenvalue of A0 with associated eigenvector ψ
(the derivative φ′ of the periodic wave).



Linear stability

decay of the C 0-semigroup eAt

� difficulty: no spectral gap

� Bloch decomposition of the semigroup

eAtv(x) =
1

2π

∫ π/T

−π/T
e iξxeAξt v̌(ξ, x)dξ

Bloch operator Aξ := e−iξxAe iξx acting in L2per(0,T )

[Schneider, . . . , Johnson, Noble, Rodrigues, Zumbrun]
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Linear stability

Hypotheses

� diffusive spectral stability;

� the operator A generates a C 0-semigroup on L2(R) and for
each ξ ∈ [−π/T , π/T ) the Bloch operators Aξ generate
C 0-semigroups on L2per(0,T );

� there exist positive constants µ0 and C0 such that for each
ξ ∈ [−π/T , π/T ) the Bloch resolvent operators satisfy

‖(iµ−Aξ)−1‖L(L2
per(0,T )) ≤ C0, for all |µ| > µ0.

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]



Main result

There exists a constant C > 0 such that for any v ∈ L1(R) ∩ L2(R)
and all t > 0 we have 1∥∥eAtv

∥∥
L2(R) ≤ C (1 + t)−1/4‖v‖L1(R)∩L2(R).

Furthermore, eAt = sp(t) + S̃(t) with

‖sp(t)v‖L2(R) ≤ C (1 + t)−1/4‖v‖L1(R),∥∥∥S̃(t)v
∥∥∥
L2(R)

≤ C (1 + t)−3/4‖v‖L1(R)∩L2(R).

1The decay is lost when v ∈ L2(R), only.



Proof

estimates on Bloch semigroups eAξt , ξ ∈ [−π/T , π/T )
(use: the diffusive spectral stability hypothesis, resolvent estimate,

Gearhart-Prüss theorem)

� For any ξ0 ∈ (0, π/T ), there exist C0 > 0, η0 > 0, such that∥∥eAξt
∥∥
L(L2

per(0,T ))
≤ C0e

−η0t ,

for all t ≥ 0 and all ξ ∈ [−π/T , π/T ) with |ξ| > ξ0.
� There exists ξ1 ∈ (0, π/T ) and C1 > 0, η1 > 0 such that∥∥eAξt (I − Π(ξ))

∥∥
L(L2

per(0,T ))
≤ C1e

−η1t ,

for all t ≥ 0 and all |ξ| < ξ1, where Π(ξ) is the spectral
projection onto the (one-dimensional) eigenspace associated to
the eigenvalue λc(ξ), the continuation for small ξ of the simple
eigenvalue 0 of A0.



Proof

decompose the semigroup eAt (use: the representation

formula for the semigroup and a smooth cut-off function with

ρ(ξ) = 1 for |ξ| < ξ1/2 and ρ(ξ) = 0 for |ξ| > ξ1)

eAtv(x) =
1

2π

∫ π/T

−π/T
ρ(ξ)e iξxeAξt v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T
(1− ρ(ξ))e iξxeAξt v̌(ξ, x)dξ

=: Slf (t)v(x) + Shf (t)v(x)

and show that

‖Shf (t)v‖L2(R) . e−ηt‖v‖L2(R)



Proof

decompose Slf (t)v(x) (use the diffusive spectral stability

hypothesis)

Slf (t)v(x) =
1

2π

∫ π/T

−π/T
ρ(ξ)e iξxeAξtΠ(ξ)v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T
ρ(ξ)e iξxeAξt(1− Π(ξ))v̌(ξ, x)dξ

=: Sc(t)v(x) + S̃lf (t)v(x)

and show that ∥∥∥S̃hf (t)v
∥∥∥
L2(R)

. e−ηt‖v‖L2(R)



Proof

decompose Sc(t)v(x) (use formula for Π(ξ))

Sc(t)v(x) =
1

2π

∫ π/T

−π/T
ρ(ξ)e iξxeAξtΠ(0)v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T
ρ(ξ)e iξxeAξt(Π(0)− Π(ξ))v̌(ξ, x)dξ

=: sp(t)v(x) + S̃c(t)v(x)

and show that2∥∥∥S̃c(t)v
∥∥∥
L2(R)

. ‖ξe−dξ
2t‖L2

ξ(R)‖v‖L1(R). (1 + t)−3/4‖v‖L1(R)

‖sp(t)v‖L2(R) . ‖e
−dξ2t‖L2

ξ(R)‖v‖L1(R). (1 + t)−1/4‖v‖L1(R)

2The decay is lost when v ∈ L2(R), only.
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linear stability implies nonlinear stability

 rely on Duhamel’s formulation and properties of the
semigroup

 two main difficulties:

� semigroup with slow decay (1 + t)−1/4

� C 0-semigroup
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Nonlinear stability

First difficulty: semigroup with slow decay (1 + t)−1/4

� no decay for the (unmodulated) perturbation

ṽ(x, t) = ψ(x, t)− φ(x)

satisfying (Duhamel formulation)

ṽ(t) = eAtv0 +

∫ t

0

eA(t−s)Ñ (ṽ(s)) ds

� define a modulated perturbation

v(x, t) = ψ(x−γ(x, t), t)− φ(x)

[Schneider, Doelman, Sandstede, Scheel, Uecker,

. . . Johnson, Noble, Rodrigues, Zumbrun]
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Nonlinear stability

modulated perturbation

v(x, t) = ψ(x−γ(x, t), t)− φ(x)

 satisfies (∂t −A) (v + γφ′) = N (v , γ, ∂tγ) + (∂t −A) (γxv)

 use Duhamel formulation and eAt = sp(t) + S̃(t) to:

� define the phase modulation γ(x, t)

γ(t) = sp(t)v0 +

∫ t

0

sp(t − s)N (v(s), γ(s), ∂tγ(s)) ds

(such that it captures the slowest decay rate (1 + t)−1/4)

� obtain a formula for v(x, t)

v(t) = S̃(t)v0 +

∫ t

0

S̃(t − s)N (v(s), γ(s), ∂tγ(s)) ds + γx(t)v(t)

(stronger decay rate (1 + t)−3/4; enough to conclude . . . )
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Nonlinear stability

Second difficulty: C 0-semigroup

� no control of derivatives of the modulated perturbation

v(x, t) = ψ(x−γ(x, t), t)− φ(x)

appearing in the nonlinear terms N (v(s), γ(s), ∂tγ(s))

� use integration by parts to gain derivatives and decay in the
formula for the phase modulation γ(x, t)

� also use the unmodulated perturbation

ṽ(x, t) = ψ(x, t)− φ(x)

(slow decay but no loss of derivatives)

[Sandstede & de Rijk (2021)]
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Nonlinear stability

for the unmodulated perturbation ṽ(x, t) and the modulated
perturbation v(x, t)

� obtain the decay rate (1 + t)−3/4 for the modulated
perturbation 3

v(t) = S̃(t)v0 +

∫ t

0

S̃(t − s)N (v(s), γ(s), ∂tγ(s)) ds + γx(t)v(t)

� obtain the needed regularity for the unmodulated perturbation

ṽ(t) = eAtv0 +

∫ t

0

eA(t−s)Ñ (ṽ(s)) ds

� use mean value inequalities to connect ṽ(x, t) and v(x, t)

3Recall the decay rates in the decomposition eAt = sp(t) + S̃(t)



Main result

There exist constants ε,M > 0 such that, whenever the initial
perturbation v0 ∈ L1(R) ∩ H4(R) satisfies E0 := ‖v0‖L1∩H4 < ε,
there exist functions

ṽ , γ ∈ C
(
[0,∞),H4(R)

)
∩ C 1

(
[0,∞),H2(R)

)
,

with ṽ(0) = v0 and γ(0) = 0 such that ψ(t) = φ+ ṽ(t) is the
unique global solution of LLE with initial condition ψ(0) = φ+ v0.

The inequalities

‖ψ(t)− φ‖L2 , ‖γ(t)‖L2 ≤ME0(1 + t)−
1
4 ,

‖ψ (·−γ(·, t), t)− φ‖L2 ,≤ME0(1 + t)−
3
4 ,

hold for all t ≥ 0.



Further issues

� stability of solitary and generalized solitary waves

� existence and stability of other observed solutions:
multi-solitons, breathers, . . .

� other versions of LLE
(non-constant source term F ,
two spatial dimensions, . . . )

� connections between mathematical
and experimental results
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