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GENERAL CONSIDERATIONS

Denote by B(H) the C∗-algebra of all bounded linear operators acting on a complex Hilbert
space H. Let H be a closed subspace of a Hilbert space K. We denote by PH ∈ B(K) the
orthogonal projection onto H.

Let T ∈ B(H) and S ∈ B(K).
We say that S is an extension of T if SH ⊂ H and S|H = T , i.e. on K = H⊕H⊥, the

operator S has the form

S =

(
T ⋆
0 ⋆

)
.

We say that S is a (power) dilation of T if

T n = PHSn|H, ∀ n ≥ 0.

This is equivalent with one of the following matrix representations

S =

(
T ⋆
0 ⋆

)
, or S =

⋆ ⋆ ⋆
0 T ⋆
0 0 ⋆

 , or S =

(
⋆ ⋆
0 T

)
.

The existence of unitary dilations for Hilbert space contractions are basic results in dilation
theory (see the monographs of Sz.-Nagy-Foias-Bercovici-Kerchy, Foias-Frazho, N. K.
Nikolski [23,10,18]).
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Recall that T ∈ B(H) is called m-isometric for some m ≥ 1 if it satisfies the relation

m∑
j=0

(−1)j
(

m
j

)
T∗j T j = 0.

1-isometries are just isometries, (see the trilogy of Agler-Stankus [1,2,3] for more about
m-isometries).

The powers of an m-isometry S can grow only polynomially: ∃ K such that

∥Sn∥2 ≤ Knm−1, ∀ n ∈ N.

Therefore any T which has an m-isometric dilation must satisfy the same estimate.

In particular T is a 2-isometry if T∗2T 2 − 2T∗T + I = 0. Also, T is called:

concave if T∗2T 2− 2T∗T + I ≤ 0 (i.e. (∥T nx∥2)n≥0 is a concave sequence for any x ∈ H);

convex if T∗2T 2 − 2T∗T + I ≥ 0 (i.e. (∥T nx∥2)n≥0 is a convex sequence for any x ∈ H);

expansive if T∗T − I ≥ 0. A concave operator is expansive.

For a given bounded sequence (λn)∞n=0 ⊆ C there exists a unique operator W ∈ B(ℓ2(H)),
called a unilateral weighted shift with weights (λn)∞n=0, such that

W (h0, h1, h2, · · · ) = (0, λ0h0, λ1h1, · · · ), n ∈ N.

L. Suciu Extensions for operators on Hilbert spaces which satisfy polynomial growth conditions



GENERAL CONSIDERATIONS
m-ISOMETRIC DILATIONS

SUB-BROWNIAN m-ISOMETRIES AND THEIR EXTENSIONS

Theorema 1.1

If m ∈ N∗ and T ∈ B(H), then the following conditions are equivalent :

(i) T is an m-isometry,

(ii) T∗nT n is a polynomial in n of degree at most m − 1,

(iii) for each h ∈ H, ∥T nh∥2 is a polynomial in n of degree at most m − 1,

(iv) T is injective and for each nonzero h ∈ H, the unilateral weighted shift WT ,h ∈ B(ℓ2(C))

with weights
(
∥T n+1h∥
∥T nh∥

)∞

n=0
is an m-isometry.
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Agler-Stankus, 1995

B ∈ B(H) is called a Brownian unitary operator if

B =

(
V σE
0 U

)
,

where
→ V ,E are isometries with V∗E = 0 and Ran(E) = Ker(V∗);
→ U is unitary;
→ σ2 = ∥B∗B − I∥, where ∆B = B∗B − I is the covariance operator for B.

If T is a 2-isometry on H then there exist K ⊃ H and B on K a Brownian unitary with
the same covariance as T such that B|H = T . Hence an operator which has a 2-isometric
dilation has also a Brownian unitary dilation.
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Let T be a left invertible operator on H, T ′ = T (T∗T )−1 its Cauchy dual. T ′ is also left
invertible.

We define
H∞(T ) =

⋂
n≥0

T nH.

We say that T is
→ analytic if H∞(T ) = {0};
→ has the wandering subspace property (WSP) if

∨
n≥0 T nKer(T∗) = H;

→ admits a Wold type decomposition (WTD) if

H = H∞(T )⊕
∨
n≥0

T nKer(T∗),

where the subspaces are reducing for T and T |H∞(T ) is unitary.
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S. Shimorin, 2001

T is analytic iff T ′ has WSP;
T admits a WTD iff T ′ admits a WTD. In this case H∞(T ) = H∞(T ′).
If T is concave then T is analytic iff T ′ is analytic. Also, if T is concave then it admits a

WTD.
If T is analytic then

H ←→ D = {Θh : h ∈ H}

h↔ Θh, Θh : D(0, r(T ′)−1)→ Ker(T∗)

(Θh)(z) =
∑
n≥0

(PKer(T∗)T
′∗nh)zn

T ←→ Mz on D, (Mz f )(z) = zf (z)

T ′∗ ←→ Bz on D, (Bz f )(z) =
f (z)− f (0)

z
.
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A. Olofsson, 2004

If T is an analytic 2-isometry then D = Dµ where

µ : Bor(T)→ B(Ker(T∗));

µ̂(n) = µ̂(−n)∗ = PKer(T∗)T
∗n(T∗T − I)|Ker(T∗); n ≥ 0;

∥f∥2
µ = ∥f∥2

H2 +

∫
D
⟨P(µ)(z)f ′(z), f ′(z)⟩dA(z);

P(µ)(z) =
∫
T

P(z, eiθ)dµ(eiθ), z ∈ D

P(z, eiθ) =
1− |z|2

|eiθ − z|2
, z ∈ D.
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Theorema 2.1

Let m ≥ 0 be an integer and let T ∈ B(H) be an operator satisfying the condition

sup
n≥1

n−m/2∥T n∥ <∞. (2.1)

Then T has an expansive and analytic (m + 3)-isometric dilation.
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Proof.

Suppose first that the Hilbert space H is separable.
Let K ≥ max{1, n−m/2∥T n∥ : n ≥ 1}. Then

∥T n∥2 ≤ K 2nm, n ≥ 1.

For every integer s ≥ 1 we set

αs =

(
2Ks + 1

2K (s − 1) + 1

)(m+2)/2
.

Clearly α1 ≥ α2 ≥ ... ≥ 1.
Let ℓ2

+(H) =
⊕∞

j=0Hj , where Hj = H for j ≥ 0, and let S be the weighted forward shift of
multiplicity dimH with the weights αs , i.e., S is defined by

S(h0,h1, ...) = (0, α1h0, α2h1, ...)

for all sequences (h0, h1, ...) ∈ ℓ2
+(H). Then

∥Sn(h0, 0, ...)∥2 = ∥(0, 0, ..., (2Kn + 1)(m+2)/2h0, 0, ...)∥2 = (2Kn + 1)m+2.

Moreover, it is easy to see that S is an (m + 3)-isometry.
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Proof.

Let S∗ be the adjoint of S, i.e., S∗ is the weighted backward shift defined by

S∗(h0,h1,h2, ...) = (α1h1, α2h2, ...).

We prove now that S∗ is (unitarily equivalent to) an extension of T∗. Indeed, for s ≥ 1, let

bs = (α1 · · · αs)
−2 = (2Ks + 1)−m−2.

Using (2.1), we get

∞∑
s=1

bs∥T∗s∥2 =
∞∑

s=1

bs∥T s∥2 ≤ K 2
∞∑

s=1

sm(2Ks + 1)−m−2

≤ K−m2−m−2
∞∑

s=1

s−2 ≤
π2

24
< 1.

Thus, by V. Müller [17, Theorem 2.2], T∗ is unitarily equivalent to a restriction of S∗ to an
invariant subspace (H being separable).

In conclusion S is an (m + 3)-isometric dilation of T and it is clear that S is analytic and
expansive (because αs ≥ 1 for all s ≥ 1).
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Remark 2.2

We have the following implications:
T has m-isometric dilation =⇒ sup

n

∥T n∥2

nm−1 < ∞

=⇒ T has an expansive, analytic and minimal
(m+2)-isometric dilation.

Invertible m-isometric extensions. If T is an invertible m-isometry and m is even, then T
is an (m − 1)-isometry. Suppose that m + 3 is odd.

The (m + 3)-isometric operator S in Theorem 2.1 has an invertible (m + 3)-isometric
extension Ŝ.

Indeed, assuming that
∥T n∥2 ≤ K 2nm, n ≥ 1,

for fixed m and K , set wn = (2Kn + 1)m+2 for n ∈ Z.
Let Ŝ be the weighted bilateral shift of multiplicity dimH defined by

Ŝ(. . . , h−1, h0, h1, . . . ) =

(
. . . ,

√
w−1

w−2
h−2,

√
w0

w−1
h−1,

√
w1

w0
h0, . . .

)
.

Clearly Ŝ is invertible and (m + 3)-isometric. Moreover, Ŝ is a dilation of T .

Corollary 2.3

Every power bounded operator has an invertible 3-isometric dilation.

Since every invertible 2-isometry is a unitary operator Corollary 2.3 is optimal.
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In the case of Foguel-Hankel type operators, using a result of
Bermudez-Martinon-Müller-Noda [6] we can give the following

Theorema 2.4

Let T ∈ B(H) be an operator such that, with respect to an orthogonal decomposition
H = H0 ⊕H1, has the block matrix form

T =

(
C0 E
0 C1

)
,

where Ci are contractions on Hi (i = 0, 1) and E ∈ B(H1,H0) is such that EC1 = C0E.
Then T has a 3-isometric dilation on K ⊃ H

S =

(
V0 L
0 V1

)
=

(
V0 0
0 V1

)
+

(
0 L
0 0

)
.

where Vi are the minimal isometric dilations of Ci , i = 0, 1 and L is a dilation for E such that
LV1 = V0L.

Furthermore, S can be extended to a Jordan operator J i.e J = U + N, U unitary, N2 = 0
and UN = NU (see [16]).

Corollary 2.5

Every Foguel-Hankel operator, i.e. T =

(
S∗
+ X
0 S+

)
where XS+ = S∗

+X, S+ being the unilateral

shift can be dilated to a Jordan operator.
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In what follows we investigate a class of m-isometries which have Brownian type extensions in the
sense of the definition below. We refer here to m-isometries T ∈ B(H) for an integer m ≥ 3 that is with
∆

(m)
T = 0, which are ∆

(j)
T -bounded for j = 1, 2, ...,m − 2, where

∆
(1)
T = ∆T = T∗T − I and ∆

(j+1)
T = T∗∆

(j)
T T −∆

(j)
T .

This means that ∆(j)
T ≥ 0 and there exist constants αj > 0 such that

T∗∆
(j)
T T ≤ α2

j ∆
(j)
T , j = 1, 2, ...,m − 2. (3.1)

In this case the conditions (3.1) are equivalent to

0 ≤ ∆
(j+1)
T ≤ (α2

j − 1)∆(j)
T , j = 1, 2, ...,m − 2. (3.2)

For T , j satisfying (3.1) let σj ≥ 1 be the scalar given by

σj := inf{α > 1 : T∗∆
(j)
T T ≤ α2∆

(j)
T }. (3.3)

Then the scalar
σ := max{∥∆1/2

T ∥, (σ2
j − 1)1/2; j = 1, 2, ...,m − 2} (3.4)

is called the covariance of T , and it is denoted as σ = cov(T ).
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We illustrate now examples of operators satisfying the conditions of the form (3.1).
An operator B ∈ B(H) is called an m-Brownian unitary for an integer m ≥ 2, if under a

decomposition H = H1 ⊕H2 ⊕ ...⊕Hm, B has a matrix representation of the form

B =


V1 δE1 0 ... 0 0
0 V2 δE2 ... 0 0
.. .. .. ... .. ..
0 0 0 ... Vm−1 δEm−1
0 0 0 ... 0 U

 , (3.5)

where Vj ,Ej are isometries with N (V∗
j ) = R(Ej ) for j = 1, 2, ...,m − 1, U is unitary and δ > 0 is

a scalar.
The following main result shows that the m-Brownian unitaries play the same role in the

theory of m-isometries as (2−) Brownian unitaries in the context of 2-isometries
(see [2, Theorem 5.80]).

L. Suciu Extensions for operators on Hilbert spaces which satisfy polynomial growth conditions



GENERAL CONSIDERATIONS
m-ISOMETRIC DILATIONS

SUB-BROWNIAN m-ISOMETRIES AND THEIR EXTENSIONS

Theorema 3.1

For an operator T ∈ B(H) a scalar σ > 0 and an integer m ≥ 3, the following statements are
equivalent:

(i) T is m-isometric and ∆
(j)
T -bounded for j = 1, 2, ...,m − 2 with cov(T ) ≤ σ;

(ii) T has an extension to an m-Brownian unitary B with cov(B) = σ.

An m-isometry satisfying (3.1) is called a sub-Brownian m-isometry.
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Proof.

Let T be as in (i), that is satisfying the conditions:

∆
(m)
T = 0, ∥∆T ∥ ≤ σ2, ∆

(j)
T ≥ 0, T∗∆

(j)
T T ≤ (σ2 + 1)∆(j)

T

for j = 1, 2, ...,m − 2. Denote shortly ∆1 = ∆T and ∆j = ∆
(j)
T for j = 2, ...,m. So we have

I − σ−2∆1 ≥ 0, ∆j−1 − σ−2∆j ≥ 0 (j = 2, ...,m).

Now from the last condition we obtain for j ∈ {2, ...,m − 1},

T∗(∆j−1 − σ−2∆j )T −∆j−1 + σ−2∆j = ∆j − σ−2∆j+1 ≥ 0

therefore T∗(∆j−1 − σ−2∆j )T ≥ ∆j−1 − σ−2∆j . On the other hand, using the fact that
T∗∆1T ≤ (σ2 + 1)∆1 we get the relation

T∗(I − σ−2∆1)T = T∗T − σ−2T∗∆1T ≥ ∆1 + I − (1 + σ−2)∆1 = I − σ−2∆1.

This together with the previous inequalities provide that there exist the contractions C′
1 from

R[(I − σ−2∆1)
1/2T ] into R[(I − σ−2∆1)

1/2] and C′
j from R[(∆j−1 − σ−2∆j )

1/2T ] into

R[(∆j−1 − σ−2∆j )
1/2] for j ∈ {2, ...,m − 1}, such that

C′
1(I − σ−2∆1)

1/2T = (I − σ−2∆1)
1/2, C′

j (∆j−1 − σ−2∆j )
1/2T = (∆j−1 − σ−2∆j )

1/2.
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Proof.

Next, these contractions C′
j for j ∈ {1, 2, ...,m − 1} can be extended (by continuity and

orthogonality) to some contractions C∗
j ∈ B(Hj ), where

H1 = R(I − σ−2∆1), Hj = R(∆j−1 − σ−2∆j ),

such that C∗
1 = 0 on H1 ⊖R[(I − σ−2∆1)1/2T ] and C∗

j = 0 on Hj ⊖R[(∆j−1 − σ−2∆j )1/2T ]

for j ∈ {2, ...,m − 1}. So we have the relations

(I − σ−2∆1)
1/2 = T∗(I − σ−2∆1)

1/2C1, (∆j−1 − σ−2∆j )
1/2 = T∗(∆j−1 − σ−2∆j )

1/2Cj ,

which lead to the identities

T∗(I−σ−2∆1)
1/2(I−C1C∗

1 )(I−σ−2∆1)
1/2T = T∗(I−σ−2∆1)T−(I−σ−2∆1) = ∆1−σ−2∆2

and respectively

T∗(∆j−1 − σ−2∆j )
1/2(I − Cj C∗

j )(∆j−1 − σ−2∆j )
1/2T =

T∗(∆j−1 − σ−2∆j )T − (∆j−1 − σ−2∆j ) = ∆j − σ−2∆j+1.
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Proof.

Now for j ∈ {1, 2, ...,m − 1} let V ′
j on K′

j ⊃ Hj be an isometric dilation for Cj . So
V ′∗

j |Hj = C∗
j and denoting Nj = N (V ′∗

j ) we have that

I − Cj C∗
j = PHj (I − V ′

j V ′∗
j )|Hj = PHj PNj |Hj ,

where PHj ,PNj ∈ B(K
′
j ) are the corresponding orthogonal projections. Now the previous

identities for Cj permit to define the isometries E ′
j from Hj+1 into Nj with R(E ′

j ) ⊂ Nj , such that

E ′
1(∆1 − σ−2∆2)

1/2h = PN1 (I − σ−2∆1)
1/2Th,

and respectively
E ′

j (∆j − σ−2∆j+1)
1/2h = PNj (∆j−1 − σ−2∆j )

1/2Th,

for h ∈ H and j = 2, ...,m − 1. Clearly, the isometry E ′
m−1 from Hm = R(∆m−1) into Nm−1

satisfies the relation

E ′
m−1(∆

1/2
m−1h) = PNm−1 (∆m−2 − σ−2∆m−1)

1/2Th.

Notice that if for an index j one has R(E ′
j ) ̸= Nj then Ej = Nj ⊖R(E ′

j ) is a wandering

subspace for V ′
j i.e. V ′n

j Ej ⊥ V ′q
j Ej for n, q ≥ 0, n ̸= q, while the subspace ℓ2

+(Ej ) =
⊕∞

n=0 V ′n
j Ej

of K′
j is reducing for V ′

j . In this case Ṽj = V ′
j |K′

j ⊖ℓ2
+(Ej )

is an isometric dilation for Cj with

N (Ṽ∗
j ) = R(E ′

j ). Thus to simplify the notation we can assume that V ′
j = Ṽj , so that

Nj = R(E ′
j ), for j ∈ {1, 2, ...,m − 1}.
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Proof.

Next we have in view that T∗∆m−1T = ∆m−1 (T being an m-isometry), hence there exists an
isometry V on Hm = R(∆m−1) such that

V∆
1/2
m−1 = ∆

1/2
m−1T .

Let U on Km ⊃ Hm be a unitary extension for V . Consider the spaces

Km−1 = Lm−1 ⊕K′
m−1, where Lm−1 = ℓ2

+(Km ⊖Hm),

and successively for j = m − 2, ..., 2, 1, the spaces

Kj = Lj ⊕K′
j , where Lj = ℓ2

+(Kj+1 ⊖Hj+1).

Let Sj be the forward shift on Lj , so N (S∗
j ) = Kj+1 ⊖Hj+1. Define the mappings

Vj = Sj ⊕ V ′
j on Kj = Lj ⊕K′

j and Ej : Kj+1 → Kj , this later having the block matrix

Ej =

(
0 Lj
E ′

j 0

)
:

[
Hj+1

Kj+1 ⊖Hj+1

]
→
[
Lj
K′

j

]
,

where Lj : Kj+1 ⊖Hj+1 → Lj is the embedding mapping. Then Vj is an isometric dilation for Cj ,
while Ej is an isometry from Kj+1 into Kj with N (V∗

j ) = R(Ej ), for j = 1, 2, ...,m − 1.
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Proof.

Now we are able to define the desired extension of T . This is the m-Brownian unitary on
K =

⊕m
j=1Kj with the representation

B =


V1 δE1 0 ... 0 0
0 V2 δE2 ... 0 0
.. .. .. ... .. ..
0 0 0 ... Vm−1 δEm−1
0 0 0 ... 0 U

 . (3.6)

To prove that B is an extension for T we find an isometry Z : H → K which satisfies the
relation ZTh = BZh for h ∈ H. Thus we define Z by the relation

Zh = (I − σ−2∆1)
1/2h ⊕

 m⊕
j=2

σ−(j−1)(∆j−1 − σ−2∆j )
1/2h


for h ∈ H. It is easy to see for j = 2, 3, ...,m − 1 that

∥σ−(j−1)(∆j−1 − σ−2∆j )
1/2h∥2 = σ−2(j−1)∥∆1/2

j−1h∥2 − σ−2j∥∆1/2
j h∥2

and ∥σ−(m−1)∆
1/2
m−1h∥2 = σ−2(m−1)∥∆1/2

m−1h∥2 (for j = m). So it follows that ∥Zh∥2 = ∥h∥2 for
h ∈ H, that is Z is an isometry.
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Proof.

Also, we have the relations

ZTh = (I − σ−2∆1)
1/2Th ⊕

m⊕
j=2

σ−j+1(∆j−1 − σ−2∆j )
1/2Th,

and by (3.6),

BZh = [V1(I − σ−2∆1)
1/2h + E1(∆1 − σ−2∆2)

1/2h]

⊕
m−1⊕
j=2

[Vj (σ
−j+1(∆j−1 − σ−2∆j )

1/2h + σEj (σ
−j (∆j − σ−2∆j+1)

1/2h)]

⊕ σ−m+1U∆
1/2
m−1h = [V1(I − σ−2∆1)

1/2h + E1(∆1 − σ−2∆2)
1/2h]

⊕
m−1⊕
j=2

σ−j+1[Vj (∆j−1 − σ−2∆j )
1/2h + Ej (∆j − σ−2∆j+1)

1/2h]⊕ σ−m+1U∆
1/2
m−1h.

The last terms of ZT and BZ (for j = m) coincide, having in view that
∆

1/2
m−1Th = V∆

1/2
m−1h = U∆

1/2
m−1h. For the other terms of ZT and BZ we use that V∗

j |Hj = C∗
j ,

as well as the definitions of Cj (resp. C′
j ) and Ej , for j = 1, 2, ...,m − 1.
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Proof.

Thus we have the relations

(I − σ−2∆1)
1/2Th = V1C∗

1 (I − σ−2∆1)
1/2Th + (I − V1V∗

1 )(I − σ−2∆1)
1/2Th

= V1(I − σ−2∆1)
1/2h + E1(∆1 − σ−2∆2)

1/2h,

and respectively for j = 2, 3, ...,m − 1,

(∆j−1 − σ−2∆j )
1/2Th = Vj C∗

j (∆j−1 − σ−2∆j )
1/2Th + (I − Vj V∗

j )(∆j−1 − σ2∆j )
1/2Th

= Vj (∆j−1 − σ−2∆j )
1/2h + Ej (∆j − σ−2∆j+1)

1/2h.

These identities show that ZT = BZ , so the subspace ZH =
⊕m

j=1Hj ⊂ K is invariant for
B. Since Z is unitary from H onto ZH we conclude that T is unitarily equivalent to B|ZH. In
other words, this means that B is an extension for T . Thus we proved that (i) implies (ii).

The converse implication is immediate. Indeed, if B is as m-Brownian unitary extension for
T with cov(B) = σ then ∆

(j)
T = PH∆

(j)
B |H for j = 1, 2, ...,m. So ∆

(m)
T = 0 i.e. T is an m-isometry

and ∥∆T ∥ ≤ ∥∆B∥ = σ2. Also, since

T∗∆
(j)
T T = PHB∗∆

(j)
B B|H ≤ (σ2 + 1)PH∆

(j)
B |H = (σ2 + 1)∆(j)

T ,

we infer that σ ≥ (σ2
j − 1)1/2 where σj is given by (3.6), for j = 1, 2, ...,m − 2. Hence

cov(T ) ≤ σ, which shows that (ii) implies (i).
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From this result and Theorem 2.1 we have the following

Corollary 3.2

If T ∈ B(H) is an operator which for an integer m ≥ 3 satisfies the condition

sup
n≥1

n− m−3
2 ∥T n∥ <∞,

then T has an m-Brownian unitary dilation.
In particular, if T is power bounded then it has a 3-Brownian unitary dilation.

Theorema 3.3

For a non-isometric operator T ∈ B(H) and an integer m ≥ 3 the following statements are
equivalent:

(i) T is a sub-Brownian m-isometry;

(ii) T is expansive and there exists a sub-Brownian (m − 1)-isometry W ∈ B(H) such that

∆
1/2
T T = W∆

1/2
T .
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We characterize now the sub-Brownian m-isometric weighted shifts.

Theorema 3.4

Let p be a polynomial with complex coefficients of degree m − 1 for an integer m ≥ 3, such that
p(n) > 0 for each integer n ≥ 0. Let Sm on K = ℓ2

+(H) be the weighted shift with weights

(λn)n≥0, where λn =

√
p(n + 1)

p(n)
for n ≥ 0. Then Sm is a sub-Brownian m-isometry if and only if

the polynomial p satisfies the conditions

pq(n) :=
q∑

j=0

(−1)j
(q

j

)
p(n + q − j) > 0 (3.7)

for all integers n ≥ 0 and q = 1, 2, ...,m − 2, with pm−2(1) > pm−2(0).
In particular this happens when all coefficients of p are positive.

Corollary 3.5

Let S on K = ℓ2
+(H) be the 3-isometric weighted shift with weights (λn)n≥0, where

λn =

√
p(n + 1)

p(n)
and p(n) = an2 + bn + c > 0, for n ≥ 0 and some scalars a ̸= 0, b and c.

Then S is a sub-Brownian 3-isometry if and only if a > 0 and a + b > 0.
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Theorema 3.6

Let T ∈ B(H).

(i) If T is a convex operator such that the sequence
(

T n
√

n

)
n

is bounded then it has an

extension T̃ on a Hilbert spaceM⊃ H with T̃ of the form

T̃ =

(
C E
0 U

)
on a decompositionM =M0 ⊕M1, where:
→ C is a contraction, U is unitary and there exists F on
M′ ⊃ DC = Ran(I − C∗C)1/2 = Ran(DC) such that

Ran
(

DC
C

)
⊥ Ran

(
F
E

)
.

(ii) If T is a concave operator then it has an extension T̃ on a Hilbert spaceM which on
M =M0 ⊕M1 has the form

T̃ =

(
V E
0 U

)
,

→ with V an isometry, U a unitary operator and V∗E = 0.
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Birkhäuser, Boston, 1997.
1067-1090.

W. Majdak, L. Suciu, Triangulations of operators with two-isometric liftings, Integral
Equations and Operator Theory, (2021) 93:10, 1-24.

W. Majdak, L. Suciu, Convex and expansive liftings close to two-isometries and power
bounded operators, Linear Algebra and its Applications, 617 (2021), 1–26.

McCullough S. SubBrownian operators. J Operator Theory, 1989, 22 291–305.

S. McCullough, B. Russo, The 3-Isometric Lifting Theorem, Integral Equations Operator
Theory 84, 1 (2016), 69–87.

V. Müller, Models for operators using weighted shifts, J. Operator Th. 20, 1 (1988), 3-20.

N. K. Nikolski, Operators, Functions and Systems: An Easy Reading, vol I,II, AMS 2002.

Olofsson A. A von Neumann-Wold decomposition of two-isometries. Acta Sci Math
(Szeged), 2004, 70 715–726.

L. Suciu Extensions for operators on Hilbert spaces which satisfy polynomial growth conditions



GENERAL CONSIDERATIONS
m-ISOMETRIC DILATIONS

SUB-BROWNIAN m-ISOMETRIES AND THEIR EXTENSIONS

REFERENCES III

Richter S. A representation theorem for cyclic analytic two-isometries. Trans Amer Math
Soc, 1991, 328 325–349.

Shimorin S. Wold-type decompositions and wandering subspaces for operators close to
isometries. J Reine Angew Math, 2001, 531 147–189.

Suciu L. On operators with two-isometric liftings. Complex Analysis and Operator Theory,
2020, 14:5, 1-16.

Sz.-Nagy B., Foias C., Bercovici H., Kérchy L. Harmonic Analysis of Operators on Hilbert
Space. Revised and enlarged edition. In: Universitext, Springer, New York, 2010.

L. Suciu Extensions for operators on Hilbert spaces which satisfy polynomial growth conditions


	GENERAL CONSIDERATIONS
	m-ISOMETRIC DILATIONS
	SUB-BROWNIAN m-ISOMETRIES AND THEIR EXTENSIONS

