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Motivation



Shape Analysis

Objective: measuring deformations of shapes independently of the
way shapes are parameterized.

Tools needed: a Riemannian metric that is invariant to reparame-
terizations and quantifies the degrees of bending and stretching of
a shape.

Fig 1. Two paths of transformations consisting
of the same shapes with different parameterizations



The Spaces Under Consideration



Nonlinear Flag Manifolds

Let M be a manifold and § = (51,...,Sr) a collection of closed
manifolds.

The nonlinear flag manifold of type S is the Fréchet manifold of
nested submanifolds of M,

r
FIagS(M) = {(Nl,...,Nr) c H GFSZ(M) . N; C Ni—|—1}7

=1

where
Grg,(M) ={N C M : N is diffeomorphic to S;}

is the nonlinear Grassmanian of type S; in M.



Principal bundle

Ly — .
Let (S,:) : Sy S So 2.y Sr be a sequence of embeddings.

The Frechet-Lie subgroup G C Diff(S;) of diffeomorphisms com-
patible with the embeddings

G = {~ € Diff(Sr) :vot_10...01;, =1tp_10...01;07;, 7; € DIiff(S;)}
IS the structure group of a principal bundle:

T . Emb(ST’7M) — FlagS,L(M)7 W(F) — (fl(Sl)7 < '7f7“<ST’))7
where f, = Fou._10...01; € Emb(S;, M).

Here the base manifold Flags (M), called the nonlinear flag mani-
fold of type (S,¢), is a union of connected components of Flagg(M).



Fig 2. Examples of elements in the space of nonlinear flags.



The (Pre-)Shape Space

Consider M = R3 and the pair S = (S1,S?) consisting of the unit
sphere S2 and the unit circle S embedded at the equator:

LSt ey §2
Let F : S2 — R3 be an embedding. We will denote its image
by ¥ := F(S?) and the image of its restriction to the equator by

C = (Fo.)(S1). We call the space of all possible parameterizations
of the pair (C,X) the pre-shape space:

P = Emb(S?,R3)

We call the space of all unparameterzied pairs (C,X) the shape
space:

F = FIagS,L(R3)
We have the principal bundle
P = F, w(F)=(f(SY),F(S?)) where f:= (Fo.)
with structure group
G = {7 €Diff(s?) i yor =107, 7€ Diff(sh)}



e
N
X

D
O
QR
R
A W
T
wis
ity
iy
W/

s Y
—_TIrrTyTyrys
SR
S\
M

Wy

X

A

the same orbit under the group of
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reparameterizations.

Examples of elements
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Fig



Tangent Spaces

10



Vertical / Normal Bundle

The kernel of T'w is called the vertical space and represents the
tangent space to the orbit of F' € P under the action of the group
G

Verp = {Xp € TP : Xpo F~ ! is tangent to &
and its restriction to C is tangent to C}

The normal bundle Nor is the vector bundle over the pre-shape
space P, whose fiber over an embedding F'is the following quotient
vector space:

Norp :=TgP/Verg

The tangent bundle to the shape space F can be identified with
the following quotient space:

TF = Nor /G
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Fig 4. Deformation vector field and Darboux frame (t,n,v), where

v is the unit normal vector field on the oriented surface >, t is the

unit vector field tangent to the oriented curve C and n :=v X t is

the unit normal to the curve C contained in the tangent space to
the surface.
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Tangent Space to the Shape Space

Let F' be a parameterization of (C,%x). Consider the linear surjective
map

Vg TpP ~ CP®(S?,R3) = C®(C) x CP(X), (1)
which maps Xp € TP to (hi,ho) defined by

h1 = ((Xpow)o(Fou)~t n)eC>(C),
(2)

ho == (Xpo F_1,1/> € C(X).
Then the kernel of W is the vertical subspace Vergp, hence Wp
defines a map from the quotient space Norp = TrP/Verg into
C®(C) x C°°(32). The resulting bundle map W is G-invariant pro-
viding an isomorphism between the tangent space T(C,Z)]—“ and
C®(C) x C(X).
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Elastic Metrics
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Riemannian Metrics on Shape Space 1

1. We embed our shape space F of surfaces decorated with curves
in the Cartesian product Grgi(R3) x Gre2(R3), where Grg1(R3) de-
notes the shape space of curves and GrSQ(IR{3) the shape space of

surfaces.
2. We choose a family ¢g%% of Difft(S1)-invariant metrics on the

space of parameterized curves which gives us the following squared
norm of the variation o f:

EHSF) = g2 (5F,51) = a/Sl (i_r>2d€+ 5/81 15¢|2de

where » = || f(1)]|.
3. The family gaab defines a family of Riemannian metrics on the

shape space of curves by restricting to the normal variations of
curves 0f = hin + (h2|c)l/

€ (han + (h2lc)v) = a | (hirg + halomn)?de+b | (Dshy = holerg)de

+c [ (Ds(hale) + hyrg)?e

where Dgh(t) = H?%H is the arc-length derivative of the variation .
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Riemannian Metrics on Shape Space II

4. We choose a family g®0¢ of DiffT(S2)-invariant metrics on the
space of parameterized surfaces which gives us the following squared
norm of the variation 0F

ENSF) = a/SQ Tr((g_lég)o)QdA—I—b/SQ(Tr(g_l(Sg))QdA—I—c/SQ 5u]2dA

where Ag is the traceless part of the matrix A.

5. The family g“’b’c defines a family of Riemannian metrics on the
shape space of sufaces by restricting to the normal variations of
surfaces 0 F = hov:

Ef(hav) = a [ (ho)?(k1 = k2)2dA+b | (h2)2 (k1 + K2)dA
+ c/ Vho|2dA
>
6. The product of these metrics is then restricted to F using the

characterization of the tangent space to F given in Theorem 1.
16



Riemannian Metrics on
Manifolds of Decorated Surfaces

The gauge invariant elastic metrics for parameterized curves respec-
tively surfaces lead to a 6-parameter family of Riemannian metrics
on the shape space of embedded surfaces decorated with curves:

Gicx)(h1,h) = a1 /C(hlmg + holokn)?dl  +ao /Z(hQ)Q(K;l — kp)2dA
+ by /C(Dshl ~ holomg)2de by /Z(hz)z(m + 10)2dA

+ 1 [ (Ds(hale) + hyrg)?e tez [ [Vhal?dA
for h1 € C*°(C) and hy € C°(X).

We call this an elastic metric because it quantifies the deformations
of a shape. In our case, the term a1 measures the stretching of
the curve, the terms b7 and ¢y measure the bending of the curve,
the terms ao and b, measure the stretching of the surface and the
term co measures the bending of the surface.
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