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Introduction

We consider the system
AV 1 2 K5
e HAv=gv(vE -1+ )
(GC)

: o% 1 2 2 212

@ Introduced by Gross (1958) and Clark (1966) to describe the motion of
an uncharged impurity in a Bose condensate.
@ V is the wave function of the condensate. When ® = 0, V satisfies the

Gross-Pitaevskii equation

v 1 ,
(GP) Ty AV = 872\1:(|u:| —1).

@ Physical conditions:
W(t,x)| — 1 as |x] — oo and / |®]2(t, x) dx < oo.
RN
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Introduction

® = wave function for the impurity

Dimensionless constants introduced by the physicists:

d = mass of the impurity / boson mass  (small)
g? = boson-impurity scattering length / (2-boson diameter)

ky = dimensionless measure for the single-particle impurity energy
5 _ __healing length _impurity mass £ 0.0
boson-impurity scattering length ~ boson mass -

Previous work by Grant - Roberts (1974), N. Berloff - Roberts
(2002-2006)...

€
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The Gross-Pitaevskii equation

The Gross-Pitaevskii equation

(GP) ,%"’+Aw—w(yw12—1)

and its stationary version, the Ginburg-Landau equation,
1 2
(GL) AV = ?w<|W| - 1)

have been used as models for Bose-Einstein condensation, propagation of
laser beams, liquid crystals, and received considerable attention during the

last 30 years. The Ginzburg-Landau energy of W is
1
(1) Ea()= [ [VWP+ (WP - DPdx= [ VWP + V(uP)dx
RN 2e RN
The natural function space for the study of (GL) and of (GP) is

= {¥ € Hio(RY) | Equ(v)) < o0}
= {9 : RN — C | ¢ is measurable, [¢> — 1 € L>(RN), Vy € L2(RV)}.
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Conserved quantities and function space for (GC)

The energy of the (GC) system is

1 1 1
E(V, ®) = U2+ (W2 = 1)+ —=|VP]? + = |V[?|d|? dx.
(V,0) /RNIV | +2€2(| | )+€2q2|V | +€4| %|®[° dx
The mass of ¥V is
M(cb):/ |®)? dx.
RN

The energy and the mass are conserved by the flow associated to (GC).
It is natural to look for solutions (W, ®) € £ x HY(RN), where

& is the space of functions having finite Ginzburg-Landau energy,
HY(RN) = {p € L2(RY) | Vi € L2(RV)).
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Cauchy problem

Theorem (P. Gérard, 2006)
Let N € {1,2,3}. For any W, € &, the Gross-Pitaevskii equation has a uniqu
global solution W : R — & such that W(0) = W.

Furthermore, the flow associated to (GP) is continuous and

Eci(V(t)) = EcL(Wp) for all t € R.
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Cauchy problem

Theorem (P. Gérard, 2006)
Let N € {1,2,3}. For any W, € &, the Gross-Pitaevskii equation has a uniqu
global solution W : R — & such that W(0) = W.

Furthermore, the flow associated to (GP) is continuous and

Eci(V(t)) = EcL(Wp) for all t € R.

Theorem (J. Alhelou, 2021)

Assume that N € {1,2,3}. For every W € £ and every ®y € H(R") there
exists a unique global solution (W, ®) of the (GC) system with initial values
(W, ®)(0) = (Wo, Po).

Moreover, the energy E(W(t), ®(t)) and the mass M(®(t)) are conserved by
the flow associated to (GC).
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Stationary solutions

Let N > 2.

Any finite-energy solution of the Ginzburg-Landau equation in RV is constant

Proof. Any solution ¢ € £ is a critical point of Eg. Let ¢,(x) =1 (g) )
Then d%l » (EcL(¥5)) = 0 and this gives the Pohozaev identity

(/v—z)/RN |V1/J]2dx+N/RN V(|]?) dx =0

= ) is constant.
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Stationary solutions for the (GC) system

We are looking for solutions of the (GC) system of the form

(W, ®)(t,x) = (¥(x), e/ a(x)).

Then (¢, ¢) satisfy

(5.) { —A% + E(E e + [P - 1) =0
—Dp+ H(PY? — k) p=w-

and are critical points of the action functional E(v, ¢) — wM(p).

We are interested by ground states and we will consider the problem

minimize E(¢,¢) for i € £, € HY(RN) s.t. / |2 dx = m.
RN
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For m > 0, we define
gmin(m) = inf {E(w,w) | ¥ €& p e HI(RY), /]R L lel? dx = m} :

1 1 1
_ 2 2 2 2 2 2
Recall that E(w,¢)_/RN|V\|J| + 5 (VP =17+ 55 VO + SWPofdx

™M
I0)

Proposition
Assume that N € {1,2,3}.Then:

(i) gmin is non-decreasing and concave on (0,00), and 0 < gmin(m) < Z for

all m> 0.

(ii) There exists C > 0 such that gmin(m) < Cms.

= . m . gmin(m) _ l
(i) If N =1 we have gnin(m) < g for any m > 0 and nL@O =@

(iv) If N > 2, there exists mg(N) > 0 such that gmin(m) = ;4 for any

m € (0, mo(N)] and gmin(m) < g for m > mo(N).

Remark. We have mp(2) < 0.658 and mp(3) < 4.61.
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Theorem

Assume that gmin(m) < . Then:

i) There exist minimizers for gpmin(m).

Moreover, all minimizing sequences are relatively compact (modulo
translations).

i) If (1, ) € €& x HY(RN) is a minimiser, there exists

Y € [8min. (M), &1in.o(m)] such that

—Ap + F([92) + Zloly =0,

2 5
—Ap + %’w‘z@ —2¢%y9p =0 in RV,

iii) The functions v and ¢ are smooth on R" and after a phase shift, they ar
real-valued. After translation, they are radial. The radial profile of v is

nondecreasing, and the radial profile of ¢ is nonincreasing.
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Graphs of ¥ag and ¢gg in radial coordinates with mass m = 47 in dimensior

N =1 (left) N =2 (center) and N = 3 (right).
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Stationary bubble-kink (1D)

In space dimension N =1, the GP equation possesses some particular

stationary solution known as the kink: to(x) = tanh (ﬁ)

Theorem
Assume that N = 1 and that m > 0. Then, there exists w € R and there is a

least one solution (¢, ¢) to S,, with v real-valued, odd and increasing from

—1 to +1 and ¢ real-valued, even and decreasing in R .

08 u.

1

1
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Stationary bubble-vortices (2D)

The Gross-Pitaevskii (GP) equation has some remarkable stationary solutions
in the plane called vortices (Hervé and Hervé, 1994). These are stationary
solutions which can be written in polar coordinates x = rcosf, y = rsinf i
the form W(t, x) = ay(r)e®’, where d € Z* is the winding number.

The profile ay : Ry — [0, 1] solves the ODE

1 d? 1
ay(r) + () = Saq(r) = Saa(r) (3() — 1)
and increases from 0 at r = 0 to 1 for r — 0.
These solutions have infinite energy. Indeed, if 1(x) = p(x)e®’, we have

|Ve)|? = |Vp|? + f—;pz. Therefore, if p — 1 as |x| — oo, we get

/ WwdFde/ IVp|? dx + 27d? In(R).
B(0,R) B(0,R)

)
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A graphical representation of ay for 1 < d < 4 is as follows.
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Theorem (H. Brezis - F. Merle - T. Riviere, 1994)

Let ¢ be any solution of (GL) in R? having topological degree d at infinity.

Then
1

=8 (1 = 1) dx = 4nd>.
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Theorem (H. Brezis - F. Merle - T. Riviere, 1994)

Let ¢ be any solution of (GL) in R? having topological degree d at infinity.

Then
1

=8 (1 = 1) dx = 4nd>.

Theorem (P. Mironescu, 1996)
Let ¢ be any solution of (GL) in R? having topological degree 1 at infinity.

There exists xo € R? such that ¢)(x — xo) = a1(|x|)e™.

A similar result is unknown for solutions of degree d > 1 at infinity.
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We look for stationary solutions of (GC) under the form
(Va(x), pa(x)) = (ag(r)e® §4(r)),
This yields to the system (in polar coordinates and with f4 real-valued)
(SVB4 )
i+~ l(@] — Ky — Pw) =0
with the boundary conditions
aq4(0) =0, ag(r)— 1 and f4(r)— 0 asr— oo.
The mass constraint becomes

oo
/ gpgdx:27r/ 2 rdr = m,
R2 0

and w depends on m and possibly on f,.
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We need to renormalize the energy in order to deal with bubble-vortex
solutions. We choose a cut-off function x : [0,00) — [0, 1] such that x =0

on [0, 1], x is non-decreasing, C*°, and x = 1 on [2,00). We consider
2, & 2 1 2 2
Ed(p.0) = | Vo> + =5 (p°() = x*(Ix]) + 5z (Ipl* — 1)

R2 ’X’ 2¢e

1 1
+W|V¢|2 + ;4|P|2\<P’2 dx.

We study the problem

minimize E4(p, ) forpc &, ¢ € H(R?)s. t. M(¢) = m.
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Theorem
Let d € N*. Then:

i) For any m > 0 the above minimization problem admits at least a solution.
ii) If (p, ) is a solution, then p and ¢ are smooth and radially symmetric,
and ¢ is real-valued after a phase shift. The radial profile of p is
non-decreasing, the radial profile of ¢ is non-increasing, and they solve the

system (SVBy,,) for some w € R.
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Graphs of bubble-vortices with mass m = 47 a4 (blue) and ¢4 (red) in radial

coordinate for d = 1 (left), d = 2 (center), d = 3 (right):
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Traveling waves for (GP)

Traveling waves are solutions of (GC) of the form
V(x,t) = (x1 — ct,x2,...,xn). The profile ¢ satisfies

g L+ Liop-
_’Caixl— A¢+62(|¢| +€2’¢| 1)¢

Traveling waves of speed ¢ for (GP) are critical points of the functional
Eci(v) — cQ(v). These solutions have received a lot of attention
(Grant-Roberts '74, Bethuel-Saut Ann IHP '99, Bethuel-Orlandi-Smets JFA
'04, Bethuel-Gravejat-Saut CMP '09, M. '13, Chiron-M. ARMA 17, ...).
Theorem (P. Gravejat, 2003)

The (GP) equation does not admit non-constant finite energy traveling wave:
of speed |c| > vs = V2.

Here vs = /2 is the sound velocity at infinity for (GP).
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The momentum

The momentum (with respect to x7) is a functional Q such that
Q'(u) = 2iuy,.

(@)  If ue HY(RN) or if u € a+ HY(RN) we have Q(u) = / (it , u) dx.
RN
(b)  If ¢ € £ has a lifting 1) = pe’®, we have (formally)

Q(Y) =— /]RN P20 dx = — /RN(p2 —1)6,, dx.

Using a functional analysis argument, we can define the momentum for any

function ¢ € £ in such a way that this definition agrees with (a) and (b).

The momentum is conserved by the Gross-Pitaevskii equation.
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Let ¢ € (—vs, vs). We are looking for critical points of the functional
E};L — C(?.

Three methods have been used :

@ Minimize Eg; when Q@ is kept fixed, ¢ will be a Lagrange multiplier

= a family 7; of travelling waves (+ orbital stability).
@ Minimize E — Q when / |V4)|? dx = const. = a family T»
RN
@ Minimize E — cQ under a Pohozaev constraint => a family 73

We have 71 C T> C Ts.

Minimization of energy at fixed momentum.

Assume that N =2,3. For p > 0, let

(2) Evmin(p) = inf{EcL(v) | ¥ € €, Q(¥) = p}.
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Theorem
We have:

(i) The function Ej min is concave, increasing on [0, 00), E1 min(p) < vsq for

any g > 0, the right derivative of Ep,;, at 0 is vs, Emin(p) — oo and
M — 0 as

. p — 00.
(i) Let pg = inf{p > 0| E1 min(p) < vsp}. For any p > po, all sequences
(¥n)n>1 C & satisfying Q(¢n) — p and E(vn) — Emin(p) are precompact
(modulo translations).
Theset S, ={Y € £ | Q(¥) = p, E(¥)) = E1,min(p)} is not empty and is

orbitally stable by the flow associated to (GP).

(iii) Any 9, € Sp is a traveling wave for (GP) of speed
c(¢p) € [dT Exmin(P), d™ E1,min(p)], where we denote by d~ and d the left
and right derivatives. We have ¢(¢,) — 0 as p — 0.

(iv) We have pp =0 if N =2 and pg > 0 if N = 3.
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Energy-momentum diagram for (GP) in 2D

:,' E=Vsp

P, P

Energy-momentum diagram for traveling waves to (GP) in dimension 2.
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Energy-momentum diagram for (GP) in 3D

E A ;.
S
/E=vp
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v ’
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I,'
/
/
I' H
/ : o
0 p min pV p

Energy-momentum diagram for traveling waves to (GP) in dimension 3.
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Traveling waves for (GC)

Traveling waves are solutions of (GC) of the form
V(x,t) =(x1 — ctyxo, ..., xn), P(x,t) = P(x1 — ct,xa, ..., xn).

It is more interesting to search for ¢ of the form @(x) = e/t (x); this

transform leads finally to ®(x, t) = 91— (x; — ct, xo, ..., xn). We find
that ¥ and ¢ must satisfy the system
—2iegl =~ (WP + 1o - 10
(TW)
9 2
(B?+ ke = —Ad+ FUl%e.

The sound velocity at infinity associated to (GC) is vs = g

Theorem

Any traveling wave (v, p) € € x HY(RN) of speed |c| > vs is constant.
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e Q(v) and Q(y) are not conserved quantities for (GC). Let

)
£2q2

(3) P(¥,¢) = Q) + 55 Q(p).

It is easily seen that P is (at least formally) a conserved quantity for the
system (GC). Therefore it is natural to seek for traveling waves for (GC)
by minimizing E while P is kept fixed.

@ Traveling waves of speed ¢ for the system (CG) are critical points of the

functional E — cP.

@ Assume that (v, ¢) is a critical point of E — cP, that is
d(E — cP)(¢,) = 0. There is an interplay between the mass and the
momentum of : evaluating d(E — cP)(v, ¢).(0, ix1p) and integrating

by parts we get 5
c
Q) =5 [ 1o o
RN
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We may proceed similarly for the (GC) system as for the (GP) equation and

we consider the minimization problem
(P,)  minimize E(¢,¢) for v € £, p € HY(RN) satisfying P(1), p) = p.

Let
Emin(p) = inf {E(@Zw) |V €& pe HIRY), Py, ¢) = p} :

Proposition
Assume that N € {2,3}. Then:

i) Emin is concave, positive and increasing on (0,00), and Epin(p) — o0,

E"”'#(p)—>0asp—>oo.

ii) There is S; > 0, explicitly depending on the physical parameters in (GC),
. Emin(p)
such that lim

p—0 1%
If N =2 we have Epin(p) < Sip for all p > 0.

=51 and Epin(p) < Sip for all p > 0.
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Let pg = inf{p > 0| Emin(p) < S1p}.

Theorem

Assume that N =2 or N = 3, and p > 0 is such that Enjn(p) < S1p.
Then there exist minimizers for the problem (Pp,).

Moreover, any minimizing sequence (0, ¢n)n>1 C € x HY(RN) contains a
convergent subsequence (after translation).

Any minimizer v, ¢ of (Pp) solves the (TW) system for some

¢ € [dT Emin(p), d™ Emin(p)]-

The functions 1 and ¢ are smooth in RN and axially symmetric about Ox;

(after translation).
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Minimization of the energy at fixed mass and momentum

We consider the problem
(Ep,m) minimize E(1, ¢) when Q(¢) = p and / || dx = m.
RN

If (¢, ¢) is a minimizer, the parameters ¢ and A = §2¢2 + k2, appearing in

(TW) will be the corresponding Lagrange multipliers. For p € R and m > 0,
let

=p, d
cutp) =it (et | e peman, M0 24 )
RN -

Recall that
E1,min(q) = inf{EcL(¥) | ¥ € &, Q(¥) = q}.
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Proposition

The function Ep,j, has the following properties:

(i) Emin(p, m) = Emin(—p, m) for any p € R and any m > 0.

(ii) Emin(p, m) is finite and continuous on R X [0, c0), and for all p € R and
m > 0 we have Epin(p,0) = E1 min(|p|), Emin(0, m) = gmin(m), and

maX(El,min(’p’)ygmin(m)) < Emin(Pv m) < El,min(|P|) +gmin(m)~

(iii) Emin is sub-additive:

Emin(p1 + p2, m1 + m2) < Emin(p1, m1) + Emin(p2, m2) for all p1, p2, m1, mo.
(iv) For any fixed py the mapping m — Epin(po, m) is concave and
increasing on [0, c0).

(v) If N > 3, for any pair (po, mg) # (0,0), mg > 0, the mapping

t — Emin(tpo, tmg) is concave and increasing on [0, c0).
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(vi) Assume that p;, po € R and my, my > 0 are such that

Emin(pla ml) = Emin(p2a m2) = Emin(pl = p2, m 4 m2)-

Then we have either

Emin(p1,0) + Emin(p2, m1 + m2) = Emin(p1 + p2, m + my),

Emin(pla my + m2) aF Emin(p27 O) — Emin(pl + p2, m; + m2)-

or
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Theorem

Assume that N =2 or N = 3 and the pair (p, m) satisfies the following strict
sub-additivity condition:

(4) El,min(p,) =+ Emin(p - p/’ m) > Emin(pa m) for any pl € R*.

Then the minimization problem (€, m) admits solutions, and any minimizing

sequence has a convergent subsequence (after translations).

Let
S = {(p, m) € (0,00)? | (p, m) satisfies (4) }.

We are able to show that S # () (and in fact S is quite large).
We have checked numerically that some physically relevant pairs (p, m)

belong to S.
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Theorem

Assume that N =2 or N = 3 and the pair (p, m) satisfies the following strict
sub-additivity condition:

(4) El,min(p,) =+ Emin(p - p/’ m) > Emin(pa m) for any pl € R*.

Then the minimization problem (€, m) admits solutions, and any minimizing

sequence has a convergent subsequence (after translations).

Let
S = {(p, m) € (0,00)? | (p, m) satisfies (4) }.

We are able to show that S # () (and in fact S is quite large).

We have checked numerically that some physically relevant pairs (p, m)
belong to S.

Question: s it true that (p,m) € S for all p > py and m > mg?
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Small mass, high momentum traveling wave for (GC) in 2D

Graphs of v (left) and of ¢ (right):
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Va multumesc pentru atentie !
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