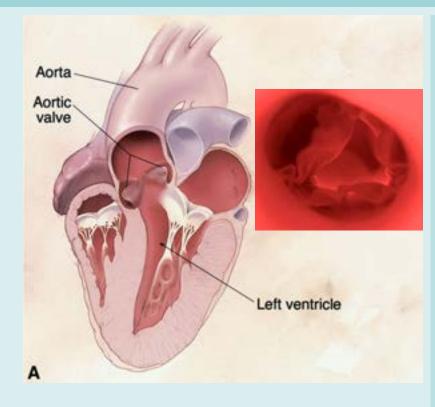
Tehnologii de inginerie tisulară pentru regenerarea valvelor cardiace

Dan Simionescu, PhD

Department of Bioengineering, Clemson University, Clemson, SC, USA and Collaborators



Workshop: Medicina Personalizata

Research Goal: to regenerate cardiac valves

"...valves are the most *mechanically* stressed tissues in the body"¹

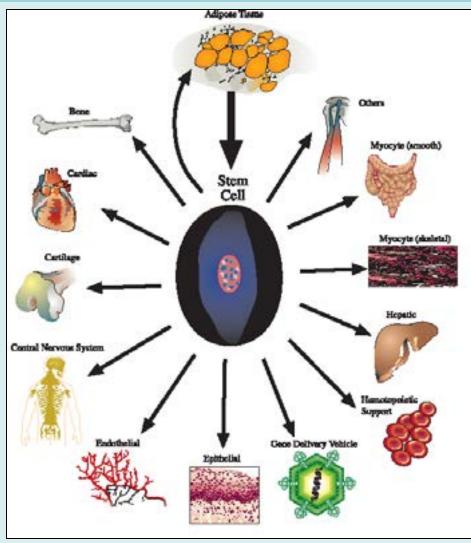
- Continuous performance
- Aggressive environment

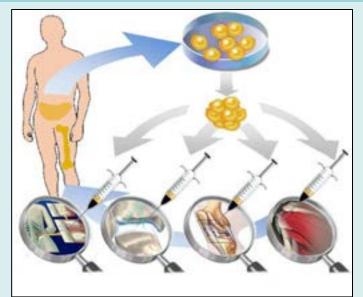
Q: Secret to valve durability?

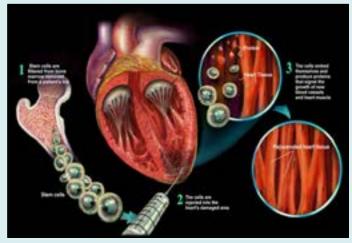
A1: Unique 3D Structure

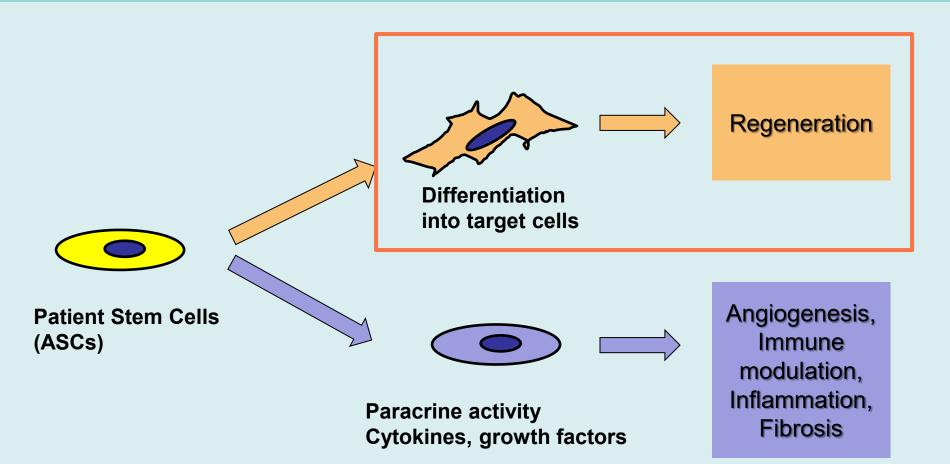
- 1. Matrix components, collagen, elastin
- 2. 3D distribution, architecture

A2: Specific Cells


- 1. Fibroblasts (VICs), Endothelial cells (VECs)
- 2. Active matrix homeostasis


Our Approach

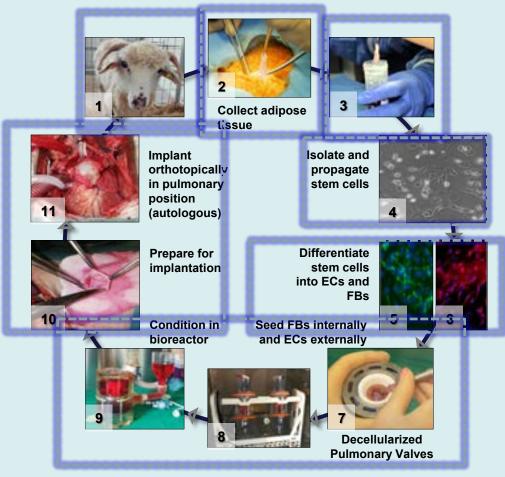

- 3D structure: use decellularized valves
 - Eliminates antigenicity, preserves structure
- Seed with cells: use autologous stem cells
 - Differentiated into valve cells
- Prepare for implantation
 - Dynamic conditioning in bioreactors


Adult Stem Cells Have Great Potential for Therapy and Regeneration

Adult Stem Cells

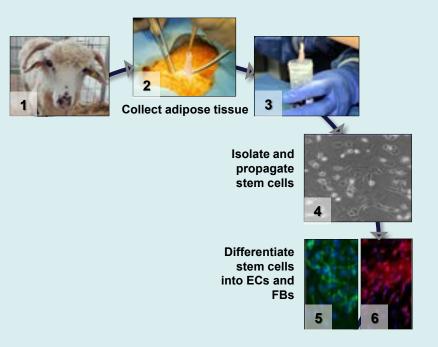
Decellularized tissues are safe for human use

>3 million patients have been implanted with matrix-based, acellular tissues from human, bovine, porcine, equine sources (FDA approved)


Table 1

Source material and form of commercial ECM-based products available for therapeutic applications.

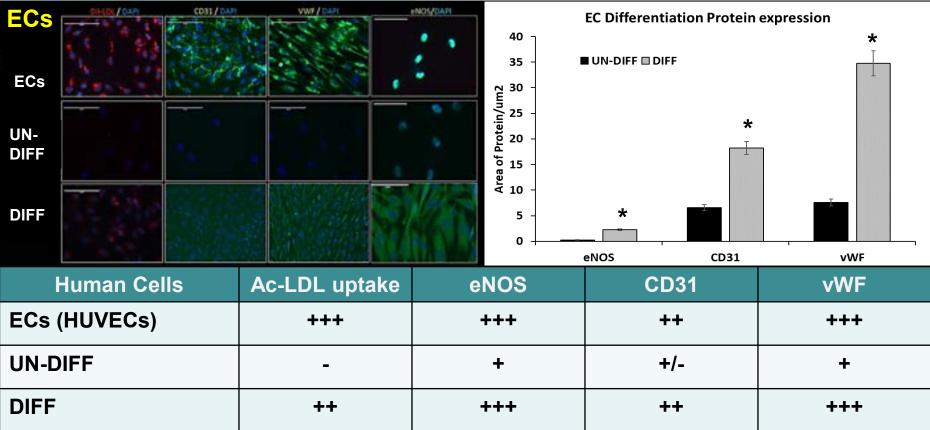
Product	Company	Material	Form	
AlloDerm®	LifeCell™	Human skin	Natural	
Axis™ dermis	Mentor	Human dermis	Natural	
Bard Dermal Allograft	C R Bard	Cadaveric human dermis	Natural	
CuffPatch™	Biomet Sports Medicine	Porcine small intestinal submucosa (SIS)	Cross-linked	
DuraADAPT™	Pegasus Biologicals	Horse pericardium	Cross-linked	
Dura-Guard®	Synovis Surgical	Bovine pericardium	Cross-linked	
Durasis®	Cook® Medical	Porcine small intestinal submucosa (SIS)	Natural	
Durepair [®]	TEI Biosciences/Medtronic	Fetal bovine skin	Natural	
FasLata®	C R Bard	Cadaveric fascia lata	Natural	
Graft Jacket [®]	Wright Medical Tech	Human skin	Natural	
Oasis®	Cook® Biotech/Healthpoint	Porcine small intestinal submucosa (SIS)	Natural	
OrthADAPT ^{IM}	Pegasus Biologicals	Horse pericardium	Cross-linked	
Pelvicol"	C R Bard	Porcine dermis	Cross-linked	
Peri-Guard [®]	Synovis [®] Surgical Innovations	Bovine pericardium	Cross-linked	
Permacol ^m	Covidien	Porcine skin	Cross-linked	
PriMatrix	TEI Biosciences	Fetal bovine skin	Natural	
Restore®	DePuy	Porcine small intestinal submucosa (SIS)	Natural	
SurgiMend®	TEI Biosciences	Fetal bovine skin	Natural	
Surgisis®	Cook® Medical	Porcine small intestinal submucosa (SIS)	Natural	
Suspend™	Mentor	Human fascia lata	Natural	
TissueMend [®]	TEI Biosciences	Fetal bovine skin	Natural	
Veritas®	Synovis® Surgical Innovations	Bovine pericardium	Cross-linked	
Xenform [®]	TEI Biosciences/Boston Scientific	Fetal bovine skin	Natural	


Badylak, 2013; Simionescu et al. Biomaterials, 2009, 2011.

Preclinical Testing of a Proposed Translational Scenario

Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015; Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Autologous Adipose-Derived Stem Cells (ADSCs)



Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015; Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

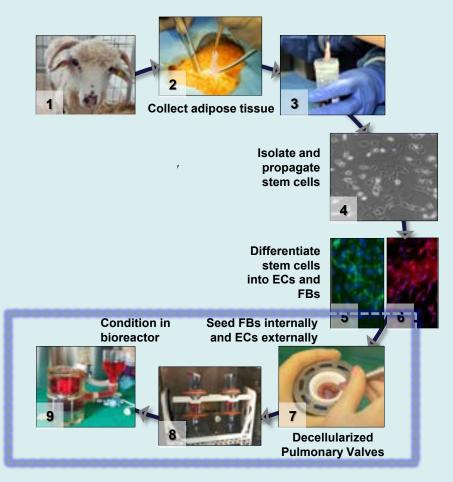
ADSC differentiation into Endothelial Cells

Method:

- ECGS growth factors + shear strain
- 3 weeks

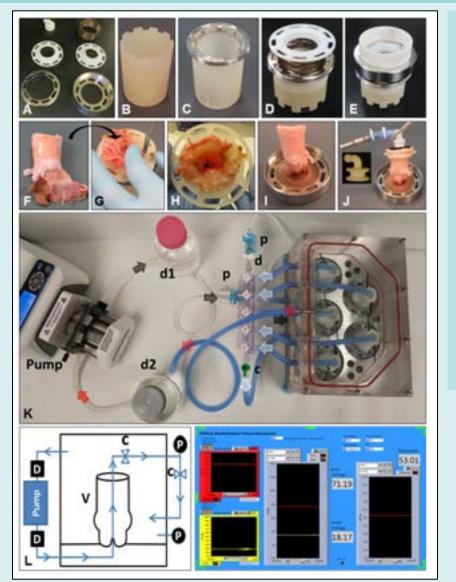
UN-DIFF = undifferentiated ADSCs DIFF = differentiated ADSCs

Simionescu, et al. 2021, Frontiers Cardiovasc. Med.


Take home message #1

 Adipose Derived Stem Cells (ADSCs) can be pre-differentiated towards valve cell

phenotypes

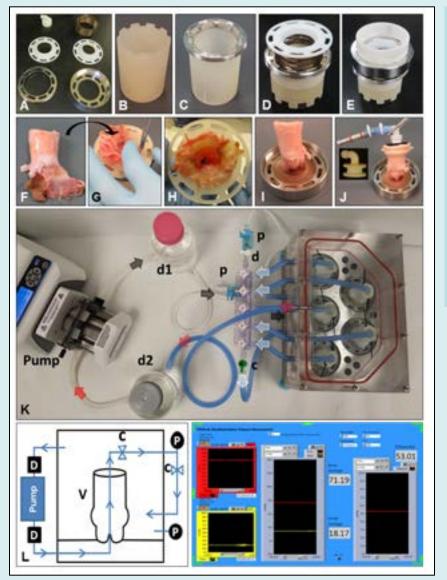

 ADSCs could serve as <u>cell sources</u> for Valve Regeneration

Valve Decellularization, Seeding, and Bioreactor Conditioning

Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015; Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Perfusion Decellularization (decell) System*

Features:

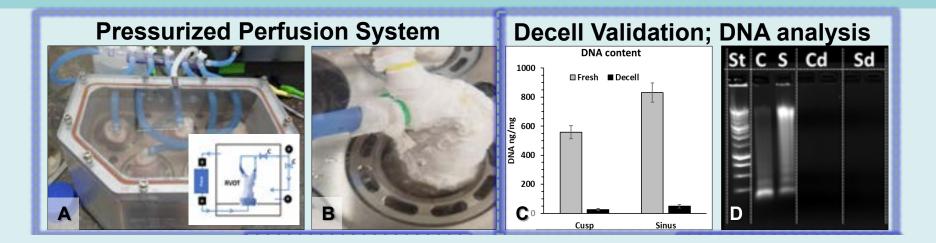

- Mounting system for roots (A-J)
- Computerized cyclic perfusion system (K) with pressure control
- Decell reagents (detergents, nucleases) flow through interior and exterior of root (L)
- Entire root dilates to ensure wall decell (M)

*Patented; Licensed to Aptus Bioreactors LLC

Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015

Perfusion Decellularization (decell) System

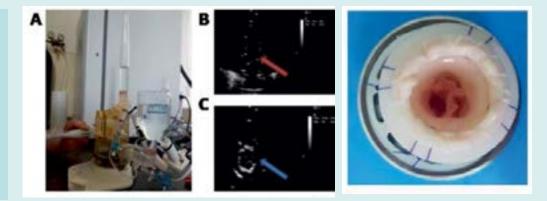
(PDCell, Aptus Bioreactors, LLC)


Features:

- *Mounting* system for roots (A-J)
- Computerized cyclic perfusion system (K) with pressure control
- Decell reagents (detergents, nucleases) flow through interior and exterior of root (L)
- Entire root dilates to ensure wall decell (M)

Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015

Decellularization of Ovine Pulmonary Valves

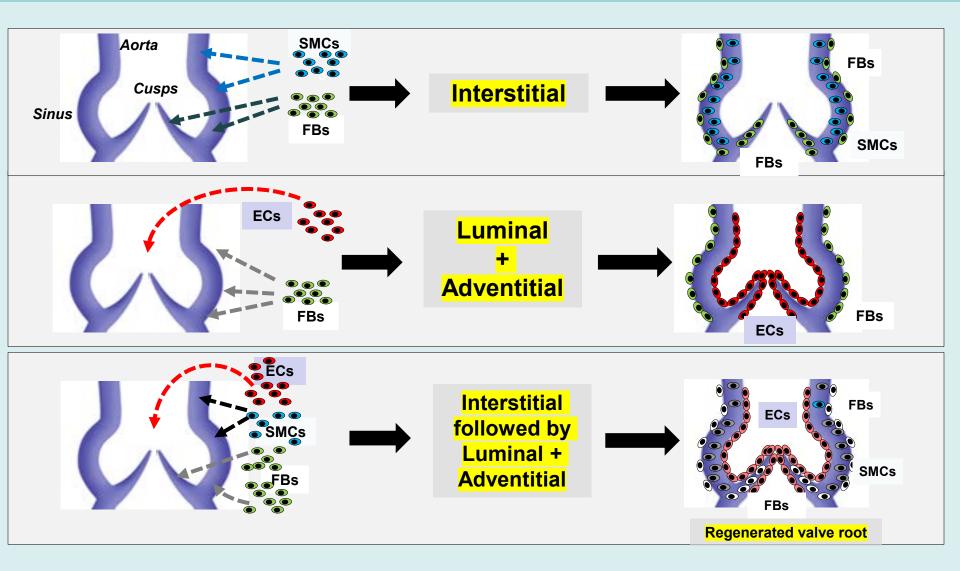


Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

St: DNA standard ladder C: cusp; S: sinus; d: decell

Hemodynamic and Functional Evaluation of Decellularized Pulmonary Valves

- **Compared** Decellularized PuValves, Fresh PuValves (*Mechanical Valves, BHVs*)
- Mounted in Aptus BR, Pu conditions: 20/5 mmHg, stroke volume 60 mL, 70 cycles/min.
- **Ultrasound** Logiq E, GE, Boston, MA, USA, 4.0 MHz phased array transducer.
- **Top highspeed video camera**, imaging software for GOA.

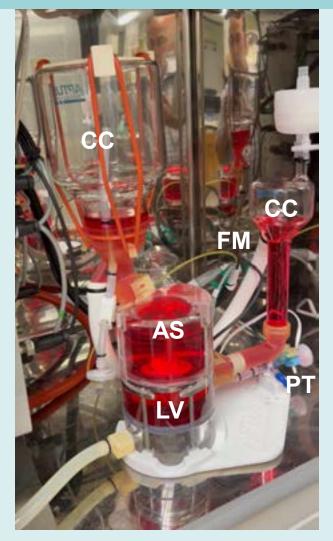


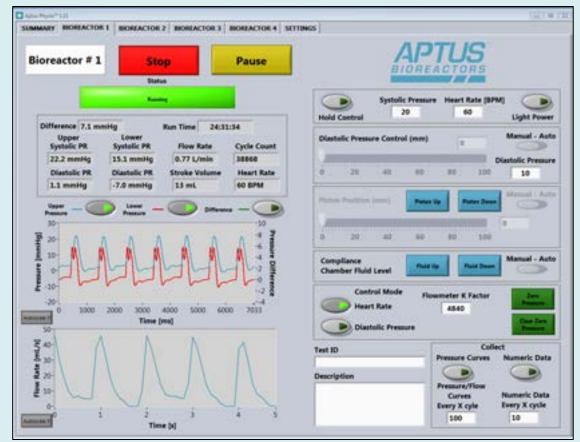
Pulmonary conditions				
54 	Decelled PuValve	Fresh Pulmonary valve		
V max (cm/sec)	328 ± 85	355 ± 25		
V mean (cm/sec)	127 ± 28	134 ± 10		
P max (mmHg)	55.12 (19.00-60.78)	50.86 (45.98-57.63)		
P mean (mmHg)	11.82 ± 5.42	12.26 ± 1.58		
VTI (cm)	45.54 ± 9.83	47.46 ± 2.09		
Functional area (cm ³)	1.14 (1.07-1.92)	1.24 (1.17-1.29)		

Table 2. Video analysis			
	Decelled PvValve	Fresh valve	
Normalized pulmonary conditions peak opening area (cm²)	2.916±0.102	3.459±0.099	

No statistically significant differences in functional valve parameters after decell

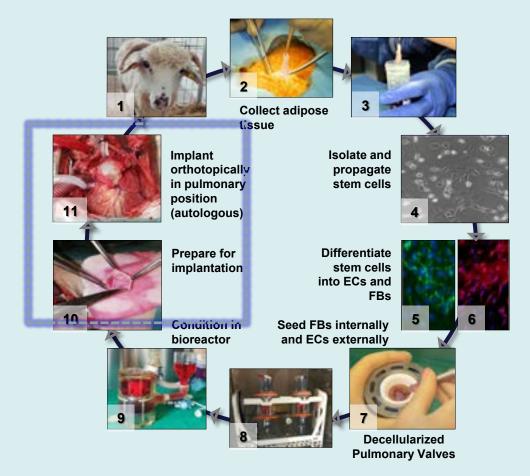
Seeding Workplan




Seeding and Conditioning in Bioreactors

- Interstitial seeding (FBs)
- Adventitial seeding (FBs)
- Luminal seeding (ECs)
- Pre-conditioning in a rotator device
- Progressive adaptation to pulmonary conditions in the heart valve bioreactor for 5 days)

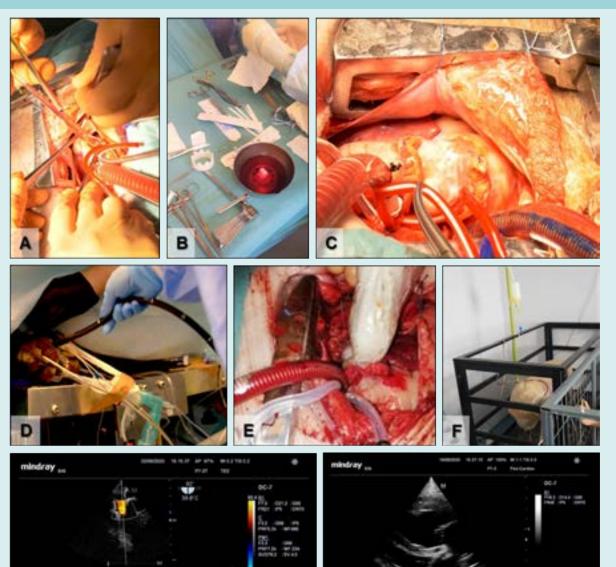
Living Valve in the Sterile Aptus Heart Valve Bioreactor



Left Ventricle, Aortic Segment, Compliance Chamber, Pressure Transducers, Flow Meter. (red fluid = sterile cell culture medium)

Take home message #2

- Complete decell of aortic roots = <u>feasible</u>
- ECM integrity = <u>maintained</u>
- Biomechanics/hemodynamics = preserved
- Re-cell is feasible = <u>but challenging</u>
- Rotators and Bioreactors facilitate construct <u>conditioning</u>


Preclinical Testing of a Proposed Translational Scenario

Harpa, Simionescu et al., RRML, 2015; Sierad, Simionescu et al., TE Part C, 2015; Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Implantation

- Sheep ~18 monthsRandomized to
- unseeded acellular valve <u>controls</u> n=6
- •Cell-seeded acellular valves n=6 (with autologous cells)
- Cardiopulmonary Bypass (CBP), orthotopic implant pulmonary position (RVOT)
- •3.5 hrs. surgery
- Average 70 min CPB
- Intra-op epicardial echocardiography
- Post-op trans-thoracic echo

Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Post-op recovery, stabilization

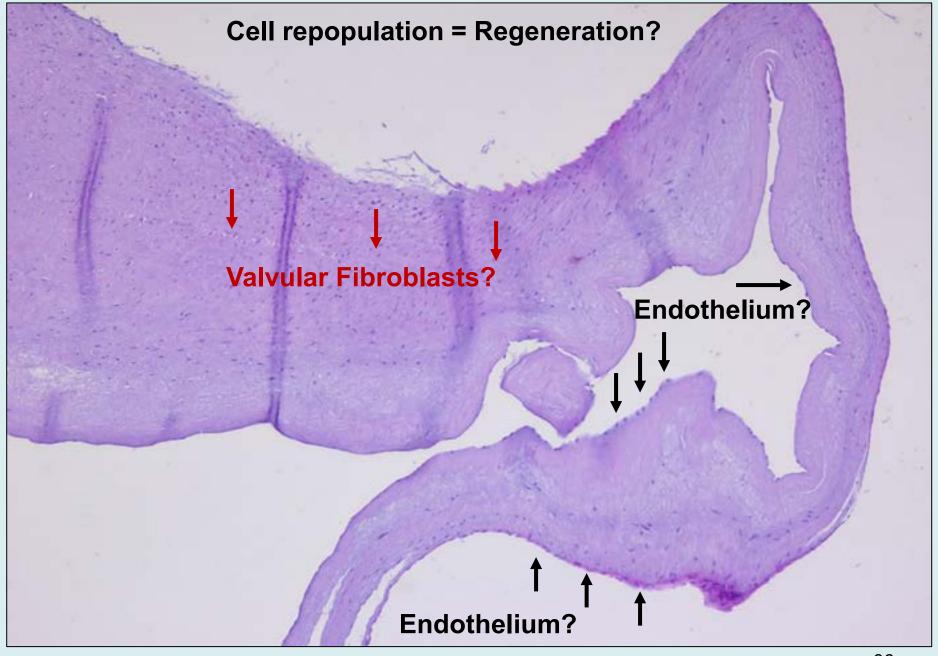
Follow-up for 6 months Weight gain ~28 kg

Monitored by echo

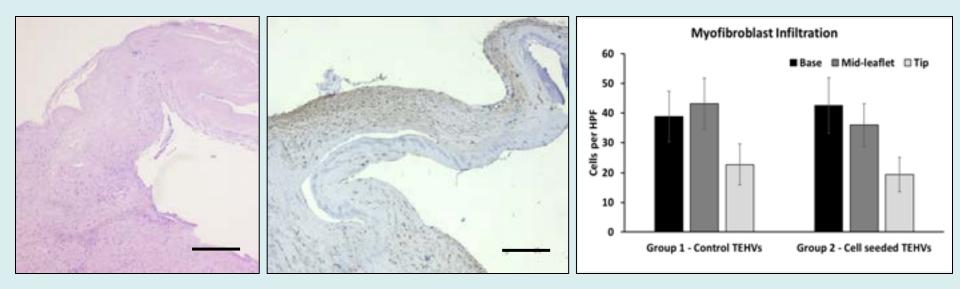
¹ Al Hussein, H., Simionescu, D. *et al.* Challenges in Perioperative Animal Care for Orthotopic Implantation of Tissue-Engineered Pulmonary Valves in the Ovine Model. *Tissue Eng Regen Med* **17**, 847–862 (2020). https://doi.org/10.1007/s13770-020-00285-1

Timeline Animal #	Initial evaluation – at implantation			End of the follow-up evaluation		
	Right and left heart morphology and function	TEHV morphology and function	Trans- TEHV maximum velocity (m/s)	Right and left heart morphology and function	TEHV morphology and function	Trans- TEHV maximum velocity (m/s)
Group 1 - co	ntrol TEHVs					
#1	Normal size and function	Normal function	0.5	Normal size and function	Trivial regurgitation	0.7
#2	Normal size and function	Normal function	0.8	Normal size and function	Moderate regurgitation	0.5
#3	Normal size and function	Normal function	0.7	Dilatation of right ventricle	Important regurgitation	0.7
#4	Normal size and function	Normal function	0.6	Normal size and function	Normal function	0.6
#5	Normal size and function	Normal function	0.5	Normal size and function	Normal function	0.7
#6	Normal size and function	Normal function	0.8	Normal size and function	Normal function	0.7
Mean +/- SEM			0.65+/- 0.13	Mean +/- SEM		0.65+/-0.08
Group 2 - ce	I seeded TEHVs					
#1	Normal size and function	Normal function	0.7	Dilated right ventricle	Important regurgitation	0.5
#2	Normal size and function	Normal function	0.8	Normal size and function	Normal function	0.7
#3	Normal size and function	Normal function	0.5	Normal size and function	Moderate regurgitation	0.6
#4	Normal size and function	Normal function	0.6	Normal size and function	Normal function	0.6
15	Normal size and function	Normal function	0.7	Dilated right ventricle and pulmonary artery trunk	Hyper-echogenic aspect of the TEHV with impaired opening of the cusps	2.4
16	Normal size and function	Mild regurgitation	0.7	Normal size and function	Mild regurgitation	0.7
Mean +/- SEM			0.66 +/- 0.10	Mean +/- SEM		0.91 +/-0.73

No statistically significant differences in functional valve parameters after 6 months


Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Explant Analysis



- Anastomoses intact
- No thrombus
- No pannus overgrowth
- Leaflets supple, thin
- No leaflet fibrosis
- No calcification
- No inflammation
- No signs of immune rejection

Histology Results

- H&E shows cell infiltration, mostly in cusp base, fibrosa, spongiosa
- Most cells were positive for a-SMC actin by IHC
- More IHC staining needed

Simionescu, et al. 2021, Frontiers Cardiovasc. Med.

Conclusions

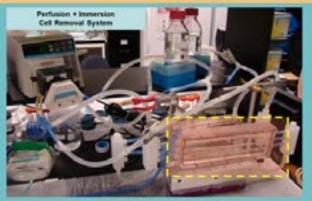
Heart valve regeneration is possible by combining:

 Acellular valve scaffolds – non-immunogenic, preserved structure and hemodynamics

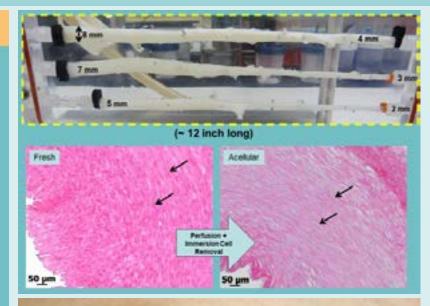
with

Autologous stem cells: differentiated into endothelial cells, fibroblasts

and with

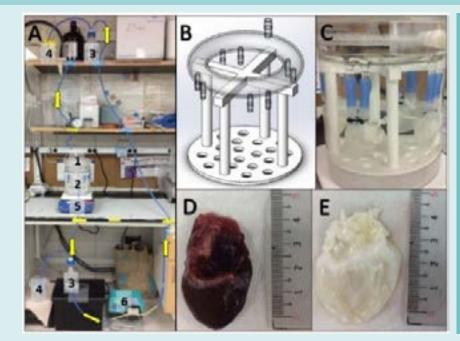

 In vitro seeding and conditioning within rotators and bioreactors

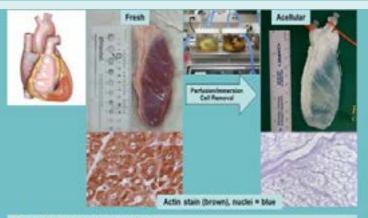
Validation by implantation of autologous cell-seeded valves as orthotopic implants

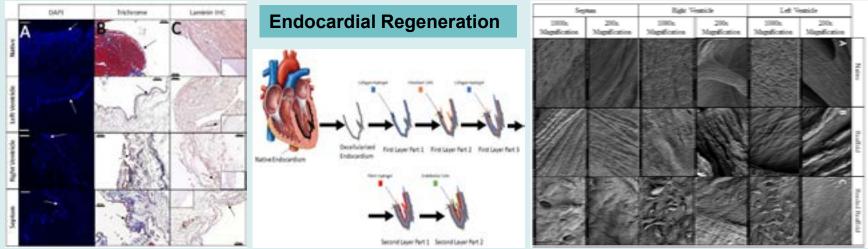

Other projects using a similar approach

Vascular Grafts

Vascular Grafts


- Target: small/medium diameter grafts (perpheret, coronary) • Acellular scaffolds (bovine internal mammary artery)
- · Vascular Bioreactor (combined with decell machine)
- Adipose stem cells differentiate into vascular cells => seed => living replacement




Myocardial Regeneration

Target: Infarcted myocardium

- · Acellular scaffold with intact vasculature and matrix
- · Seeding with stem cells
- · Bioreactor conditioning, stem cell differentiation

Compton, C., Simionescu, D. et al. Reconstitution of the Ventricular Endocardium Within Acellular Hearts. Regen. Eng. Transl. Med. 6, 90-100 (2020).

Acknowledgements

Megan Casco, Allison Kennamer, Margarita Portilla, Nicholas Rierson, Agneta Simionescu *Clemson University, Department of Bioengineering, Clemson, SC, USA* Marius Harpa, Radu Deac, Horatiu Suciu, Michael Dandel, Simona Gurzu, Lucian Harceaga, Husam Al Hussein, Terezia Preda, Ionela Movileanu, Loredana Harpa, Hamida Al Hussein, Oana Moldovan, Zoltan Pavai, Carmen Sircuta, Dan Nistor, Klara Branzaniuc, Leonard Azamfirei, Minodora Dobreanu, Alina Scridon, Peter Olah, Nicoleta Suciu, Ovidiu Cotoi University of Medicine and Pharmacy, Targu Mures, Romania, Lee Sierad Aptus Bioreactors LLC, Clemson, SC, USA

Funding

USA: National Institutes of Health (NIH) R01HL093399, 1R56HL130950-01, NIGMS #5P20GM103444-07, The Harriet and Jerry Dempsey Professorship Endowment

Romania: National Authority for Scientific Research, CNCS-UEFISCDI, project number PNII-ID-**PCCE**-2011-2-0036 and a **P.O.C. Grant** from the Competitiveness Operational Programme 2014-2020, ID P_37_673, MySMIS code: 103431, contract 50/05.09.2016

MINISTERUL EDUCAȚIEI CERCETĂRII TINERETULUI ȘI SPORTULUI

Thank you for your attention